Farewell[0] : 논리화학 Compilation
게시글 주소: https://orbi.kr/00066229837
(다음 글들)
하고싶은 잡설은 많으나, 앞에 잡설을 적으면 여러분들이 뒤로가기를 누를까봐 본론부터 적습니다.
칼럼 및 자료 모음집니다. 제 글이 정말 많아서 뭘 봐야할질 모를텐데 제가 생각하기에 중요한 글들만 모았습니다.
*오르비 접는다는거 아님.. 막문단 참고
-> 케미로직. 2021학년도 대비 수능용으로 작성 시작, 2022수능 이후 마무리.
나름 한 시대를 풍미한 책입니다. 약 1년정도 인강 포함 화1판 0티어 책이었음.. 근데 이 때를 아는 분들은 지금 최소 4수생이라 좀 거리가 머네요.
케미로직 핫픽스와 케미로직으로 구성되어 있습니다.
케미로직은 양적관계와 내분만 보시고, 케미로직 핫픽스의 경우 기출문제풀이만 골라서 보시면 됩니다.
케미로직의 중화와 케미로직 동위원소는 약간 낡았으니 다른분들 글이나 인강이 더 좋을겁니다.
지금봐도 전체적으로 잘 풀어놓긴 했다만, 좀 못푸는데? 싶은거가 몇개 있을텐데, 무려 3년전 풀이라는 점이 있고요,
제 마음대로 만든 자습서이기에 중요하다 싶은 문제는 여러번에 걸쳐 발전된 풀이로 풉니다. 이거 개못풀었다 싶으면 뒤에 찾아보면 다른 풀이 있어요.
추가적으로 내분은 공부를 해도 좋다고 생각은 합니다만, 이제 내분이 유리한 문제를 내지 않는 추세이니 메인으로 삼지는 않는게 좋습니다.
여기 있는 내용이 제 화학 풀이 기반의 전체입니다. 저는 선형적(일차함수적) 해석을 정말 좋아하고(저는 ”선형성“을 선형대수학의 선형성 의미로 사용합니다. 혼동 ㄴ), 선형함수의 합성인, 유리함수로 확장했을때 증감의 경향성이 깨지지 않음을 이용해서 문항을 많이 해결하기에, 이 책에서 그런 관점들을 배워갈 수 있어요. 하지만 이 책의 내용은 최근에 사용하는 풀이의 절반밖에 안됩니다. 즉 이걸 기반으로 쌓아올린게 있습니다.
-> 2023학년도 수능 대비 EBS 화학1 컨텐츠 선별 및 해설
2023학년도 수능 대비 EBS가 "그 해에만" 유독 퀄리티가 좋았기에 열심히 만든 컨텐츠입니다. 지금도 풀 가치가 있고요.. 2년전 듄이면 이제 공부하지도 않을테니, 사실상 "논리화학이 해설 쓴 N제" 처럼 푸시면 됩니다.
-> 유리함수 그래프의 예측 방법
2020년 (21수능 대비)
케미로직에 있는 내용을 풀어쓴 글입니다. 준 자료가 유리함수이기만 하면 그래프의 전체적 증감을 쉽게 추론 가능합니다.
유리함수의 수학적 성질에 의존하기 때문에, 수학적 직관이 필요합니다.
https://orbi.kr/00038852512 (1편)
https://orbi.kr/00038905343 (2편)
https://orbi.kr/00038970180 (3편)
https://orbi.kr/00039443756 (4편)
-> 논리화학의 최단경로 (가능한 모든 잡 테크닉을 써서 최대한 빨리 풀기)
2021년 9월(22수능 대비)
지금 제가 봤을때 최단경로가 아닌 풀이들도 몇 개 있긴 하다만(가중치 내분 안 쓴 문제가 있어요), 다 이론상 암산으로 풀 수 있을 정도로 풀이를 최대한 압축한 칼럼입니다. 최상위권으로 도약하고 싶은 분들은 꼼꼼하게 읽어보는걸 추천합니다.
->논리화학 대치 어둠의 슈퍼로지컬밀도찢기칼럼 1탄[추첨 이벤트]
2022학년도 수능 직전
여러분들의 문해력을 테스트 해 보겠습니다. 밀도 관련해서 나온 칼럼인데 추첨이벤트?입니다.
-> 비레식의 빠른 풀이(비레식의 합차 등)를 통한 221118 풀이
2022학년도 수능 해설강의 모두 올라오고 아무도 안 썼길래 올린 칼럼. 비례식 합차 풀이 유행의 시작입니다. 공식적인 곳에 업로드 된건 최초가 맞는거로 아는데, 다만 몇몇 과외쌤이나 xx현강 선생님이 사용했다는 제보가 있으니 제가 최초로 "가르친건" 아닙니다. 저도 이 수능문제 연구하다가 찾아낸 풀이는 아니고.. 예전부터 쓰던 사람은 썼지만 쓰는 사람은 중요성을 모르던 내용이라고 할 수 있겠네요.
-> 가중치 내분
유리함수의 세 점이 주어졌을때의 계산법 일반화 입니다. 엄밀히는 눈풀화1님이 최초로 발견하신 내용입니다. 좀 쉽게 풀어쓰는 방법을 찾아서 올림. 논리화학 마지막 매드무비.
사실 올해 과외를 하다가, 같은 원리이지만 더 좋은 방법을 찾았으나 저는 풀이 추가로 안 올리기로 했으니 여러분이 찾아보시는게...
-> 제목이 긴 칼럼 - 대충 '모순 증명의 대수적 동치'애 대해 서술한 매우 어려운 칼럼.
여러분들이 현강이나 높은 수준 인강에서 많은 배울 "귀류 없는 모순 증명"이 사실 귀류와 다를게 없고, 계산과 다를게 없음을 보여주는 칼럼입니다. 사실 이 칼럼을 쓴 이후, 이 관점과 "애매한 상위권에게 내분이 좋지 않은 이유"를 설명하고, 그 대체 방안 여러가지를 소개하는 칼럼을 쓰고 싶었으나 아쉽게도 제가 현생이 많이 바빠지기 시작했습니다...
-> 마지막 칼럼들
제 최근 과외에서 하는 풀이를 엿볼 수 있습니다(내년수능 대비 과외는 졸업이슈로 안합니다).
마지막 칼럼이라 해놓고 칼럼 여러게 썼는데 논리화학 이새끼 맨날 뜬다한다 이렇게 생각하실수 있다만 실제로 저 칼럼 이후로 "새로운 풀이법"들은 발견을 N개 했지만 과외생들한테만 알려주고 하나도 안 올렸어요. 그런 의미에서 마지막 칼럼이 맞습니다. 저때부터 현타가 좀 와서 지금 접게됨
EXIT-TICKET 002 https://orbi.kr/00057809142
SEAFROG 001 https://orbi.kr/00058020082
SEAFROG 002 https://orbi.kr/00058197091
PRELUDE https://orbi.kr/00063054414
INTERLUDE https://orbi.kr/00064277614
-> 제가 주요문항 해설 쓴 모의고사 : 시네로 및 그포 주관
참고하세요.
->과탐 실모의 근본적 한계
유일하게 여기에 넣은 공부법 및 기타 칼럼입니다. 여러분이 실모 공부할때 가져야할 제가 생각하는 태도?를 적었어요.
아래는 잡설입니다.
이제는 케미로직도 고대 유물이 된 것 같습니다. 뭐 제가 이거 처음 인터넷에 올렸다 이렇게 말해도 다 아는 당연한 상식 아니냐 이런 얘기도 꽤 들을 정도기도 하고요.
아무튼 논리화학 풀이가 그래서 뭔데? 하는 분들이 많은 것 같기도 합니다. 최근에 칼럼을 올린적도 없고 이전 칼럼들을 어느정도 안다고 전제하고 글을 쓰다보니 점점 여러분들간의 거리가 멀어지는 것 같기도 하고요.
아무튼, 칼럼모음집입니다. 그리고 이 글이 제 화학1 문제풀이 칼럼의 끝입니다. 다만 쓰고싶은 찐찐막칼럼 딱 하나가 있는데, 24수능 화1에서 고인물들이 어떻게 푸는지, 진짜 전부 암산으로 풀 수 있는지 간략하게 설명만 하는 칼럼을 쓸 것 같습니다. 왜 고인물들은 여러분들과 보법이 다른지 설명을 해 보고싶었어요.
또한 찐찐으로 화학을 접었어요. 있던 팀도 나왔고요. 3.5년정도 화학 붙잡고 있으니, 제가 컴수리 복전도 하는데 학교 수업 따라가기도 벅차더라고요. 이에 화1 칼럼을 올릴 일은 없을 것 같고, 컨텐츠 제작도 접었습니다. 모종의 이유로 다시 톡톡 건드릴 일이 생길수는 있겠지만 이마저도 제 전공과 관련되는거 아니면 안 할 생각입니다. 오랜만에 코딩 좀 흥미 붙이고 있는데, 이래서 내가 컴공왔지 싶을정도로 꽤 재밌더라고요.
또 접는다는게 오르비 ㅍ 이런거 다 접는다는건 아니고.. 6, 9, 수능은 한때 제가 제일 좋아했던게 화학이니 틱틱보고 코멘트정도는 쓸 수 있겠죠. 그러니깐 논화 이쉑 또 말만 하고 안접었네 이러지 마시고... 근데 올해까지 했던것 처럼 인생에서 우선순위가 높은 일은 전혀 안될 것 같고, 화1 칼럼은 위에서 말한 찐찍막 말고는 안 올릴듯 합니다(사실 그 찐찍막 글도 단순 코멘트에 가까워요). 그런 의미에서 이 글 제목이 Farewell입니다. 감사했습니다.
0 XDK (+10)
-
10
-
눈을이렇게나마주치는데말을못걸다니
-
거울봤는데 꽤나 잘생겨서 놀람 피곤해서 다크써클 생긴게 먼가 퇴폐미 넘침
-
끝나다
-
수학 96이상 떴으면 좋겠다
-
?????? 작년 2학년 수2 기말
-
머임 슬전생 1
여주랑 4년차랑 동거함??
-
수학 1등급을 쟁취하자! 아자잣 (작수 4등급)
-
높은과라 13이나 22정도 떠줘야하지 않나 34425에서 7달만에 올릴수잇으려나 하
-
내꿈은 먹고자임 0
제발 꿈를 이루게 해주세요
-
영어 노베 0
영어 아예 노베인 고2 정시러입니다… 워드마스터 고등 베이직 외우고 이영수 선생님...
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
야 정가랑 십만원 차이도 안나는건 너무한거 아니냐
-
학교 뒤집어지나요...? 제가 족보를 잃어버렸는데 혹시 교수님 손에 들어간다면... ㅠㅠㅠㅠ
-
단 하나의 깃털도 남기지 말고
-
생윤 성,사랑,가족 윤리는 도대체 뭘 배우는지 모르겠다ㅋㅋㅋ
-
수학 (이번 고2는 전국만점자 122명 ㅋㅋㅋ) 교내 최고점 96점 인천 일반고입니다..
-
내일 학교에서 보는데 왜 4덮 놔두고 굳이 이투스를 보는지 모르겠네요..
-
계시록재미없는데 0
흠
-
람쥐님 믿습니다 10
크크크
-
현역3모 화미생윤사문 55478 현역9모 43324 현역10모 21313 수능...
-
머지 나 좋아하나
-
7개년 혼자서 보고있는데 문학 독서 둘다 모르는 단어 나오면 따로 정리해서 공부할 필요 있을까요?
-
머지다노
-
여기다가 무조건 된다고 하는게 상담 해주는 입장에서 맞는 짓일까요? 본인 의지로...
-
잇올에서 3
카운터 직원분이 자기 관 빌보드 한자리수 든거 본사에 물어봐서 저인거 알아냈다는데 칭찬받음 헤헤
-
본ㅂㅏ탕 캬 0
다맞았노 ... 이제 영어 하고 코 자야지
-
빨리 벗어봐 할 게 있다니까?
-
언젠가는 슬기로울 전공의생활이구나
-
독재 퇴근 완 7
-
이게 가능함 0
아까 질문 수정 언미사탐 평백 96.5쯤 되는데 수학이 97 근데 삼육약...
-
생1 퀄리티 괜찮은가요?! 풀거면 중고로 살껀데
-
걍 벌점 받지 뭐
-
언미화1생1 -> 언미 정법생1 2506 : 90 89 3 71 75(3) 2509...
-
대한민국이 정상화되려면 문과도 수학반영을 높여야된다니까 0
수학이 필요한게 아니라 수학적 사고력이 모든 학문의 근간이자 논리의 끝인데 그걸...
-
여친은 맨날 나보고 힘든 일 있으면 말하라고 왤케 자기 얘기를 안하냐고 뭐라하면서...
-
내 수준에 맞춰서 계획 다 짜주고 숙제도 요일별로 뭐뭐할지.. 정해주면 좋겠다ㅜㅜ...
-
잘자 11
-
물이 계속 나옴 15
아침부터 귀에서 물이 계속 나오네 샤워를 너무 급하게 했나 머지
-
혈압지문 으아 3
이거 뭐야
-
수학 12,13, 20, 21이 실모 풀 땐 안풀리는데 또 막상 시간안재고 충분히...
-
진심남편. 0
내 남편이 맞나요? 내 남편이 맞아요.
-
노베라 가정했을때 보통 2합6은 뭘로 맞추나요? 수학+탐구or영어 중에서 고민입니다 다 노베입니다
-
왜3주전에시작한다는억지를부려서
-
하 존나 힘들다 0
할 게 존나 많은데 잠 줄이고 싶어도 다음날 수행이랑 야자때메 컨디션 문제갈까봐...
-
아니면 직접 그리면서? 인문학같은지문은 표상을 어떻게하나요?
-
미들 하이엔드만 전문항 오늘 다 끝냈는데 미들도 지리고 하이엔드도 개지림 풀면서...
-
하루기준 수1수2선택 전부 합쳐서요

재수삼수 시절때나 과외할 때나 큰 도움이 되었습니다 그동안 정말 감사했어요 존경합니다!수고하셨습니다
감사합니다!
가는김에 다꼬리레어 좀 다시주세요
무친련
않이 선생님들 오르비 아예 접는다곤 안함...

가중치내분 잘먹었습니다 감사합니다논리화학이라는 이름은 영원히 기억되실 겁니다!! 그동안 수고하셨습니다!!
화1러의 한줄기 빛...
지금까지 감사했습니다!
21수능 대비 케미로직 본게 예전같은데 그 세대가 벌써 5수 나이네요 ㅠㅠ
화학계의 큰 별이 지는구나..
보법이 다른 논협지의 팀과외는 유명했지
친구 뭘 좀 아는걸 보니 프로출신이구만
Rip 수고하셨습니다
보법차이를 도저히 못좁히고 화1 탈출했지만 논화 무공비급 세트는 정말 잘봤었습니다 선생님...

화1훌리로서 응원하겟습니다눈풀화 복귀하니까 논화가 떠나네... 현생 응원합니다