경제학과와 과탐의 연관성(경험에 비추어)
게시글 주소: https://orbi.kr/00066174560
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잘시간 됐다 1
-
음바페 골 0
시발 어휴
-
8시간 잤다 1
얼굴이 번들번들
-
존맛이지
-
ㅈㅂㅈㅂ
-
아 아무리봐도 저거 A가 리보솜이라는 게 이해가 안되는데 설명해주실 분..?? ㅠㅠ
-
바이 바이 바이시클
-
헐
-
네이버 프로필이 생겻어요 ㅎ.ㅎ
-
급 피곤, 5
ㅍ퓨퓨
-
머지 0
누가 내 커피 를 훔쳐 갓 네
-
알바하고 여행가고 집 어느정도 잘살고 하는애들 보면 부러움 분명 대학은 내가 더...
-
이거 닮음의 종류 10
귀찮다.
-
응급실 고칠게 the name 그대를 사랑하는 10가지 이유 천상연 바보에게 바보가...
-
곧 새르비도 못하겠군 15
나를 잊지말아줘 ㅜㅜ
-
어느날 말없이 떠나간대도 그뒷모 습까지도 사랑할래에
-
재밋겟다
-
다 성격보고 도망침
-
도화지가 없어도 0
그림을 그린다
-
난 잠시 그녈지켜줄뿐야 아무것도 바라는 것 없기에 그걸로도 감사해 워어
-
오르비 잘 자! 7
좋은 꿈 꾸기
-
근데 안자는 것 같음
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
https://orbi.kr/00016460498...
-
헤드셋 꺼놧다가 깜빡햇다 ㅋㅋ.
-
보컬 학원 다니기 본인 2년 좀 넘게 배우고 바리톤 이 새낀 고음 뚫기 존나...
-
266일금방이지 3
응
-
뭐가 더 나앗을지 모르겟다, 달리기로 멀 엮으려하면 다 별로다
-
쌩라이브는 대부분이 한음 내려서 부르던데 그럼 나도 노래방에서 2키 내려도 되는거자나
-
아직도 안 갓다 레전드 게으름
-
mnm 맛잇다 0
나의 아침
-
예전에 보낸거지우려는데..
-
셀레스티얼 > 사평우 > 어피니티 > 심심한 > 달리기선수
-
아까분명 싸이버거에소떡소떡에초밥먹고싶다썻는데 동태탕에 흰쌀밥먹고싶더니 이젠 레몬아이스티 마시고 싶음
-
정말 짜릿하다카피 닌자 셀레스티얼
-
해봐야겠다 버프를 얼마나 한거야
-
오르비하기도 바쁘다
-
해뜨고 봐요-!
-
닉변 12일 0
기다리기 힘들군
-
ㄷㄷ
-
모두 거짓이겟죠
-
최근에 깨달은건데 마지막에 대입해야할때 (특히 분수꼴) 조금이라도 막히면 걍...
-
진짜임
-
며칠 전에 꿈에서 16
은하수를 봤는데 도시 야경 위로 높은 빌딩에 조명에 엄청 화려한데 그 위로 은하수가...
-
인강에회의감이듦 4
어카죠
-
ㅇㅈ 4
사진 없는데 왜 클릭
-
전에 중학교때는 비록 친구도 거의 없고 찐따였지만 그냥 맛있는거 먹고 가끔씩...
-
나 1
하하
-
몸이 많이 안 좋구나 16
이제 개학까진 일말곤 나가지 말아야겠다 개학하긴 하려나..
-
4시에 뉴런듣기 0
챔스까지 한 시간
인정.
오...그렇군요

확통92점인 내가 할수있을까..수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.