경제학과와 과탐의 연관성(경험에 비추어)
게시글 주소: https://orbi.kr/00066174560
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 만든건데 노뱃지 주제에 꼴값 떤다고 욕먹을까봐 .. 우우
-
가위눌림 존나신기하네 가위가 이런거군
-
하
-
뭐잇니 문학이랑 독서만 봣을때 걍 감으로 느껴지는거
-
해는 매일 뜬다 7
신기하지않니
-
자살해야지 1
.
-
논술최저맞추려면 1
언매(개념 / 기출 반바퀴돔) vs 화작 사탐 vs 과탐 투투(목표 2~3) 어디가 정배임?
-
한지 vs 생윤 1
사문은 하고있는데 한지하다가 좀 하기싫어서 생윤가려는데 1등급 맞기 더 안정적인게...
-
으악.. 재수하면서 말 거의 한 마디도 안하며 살다가 대학 가 있던 친구들 연휴라고...
-
안자는사람 10
헤쳐모여!!
-
그보다 님들은 크래커 뭐랑 먹음? 치즈랑 먹을까
-
어떻게 생각하세요 !?
-
소위,중위,대령도 있나요? 생활관에서 보기도 하나요?
-
ㅇㅂㄱ 0
불면증 아오
-
새벽에몰래기만 3
이신혁 혼자백점그거나임
-
아니나만n제시작안한거지
-
또 사긴 아깝긴 한데 ㄸㅗ 살까 아님 그냥 기출 뒤져서 풀고 강의를 들을까
-
이 정도면 0
괜찮은건가요? 집에서 10분? 정도에 있는 관독임.. 관독인데 여기 원장이...
-
물리하지마셈 0
수능과목말고 물리전공은 하지마시고 특히 대학원은 더 가지마삼
-
현역 때 김승리 풀커리 타고 4등급 받았고 재수 때 그냥 혼자 마더텅 풀고 2등급...
-
수능전까지 놀면 2
하루라도 놀면 후회할까요 집에서 쉬는거 말고 친구들이랑 만나서 하루 통으로 노는거요 정시에요
-
커뮤죽었노
-
아 씨발 잠좀자자
-
차 운전석 밑에 들어가 있었네요
-
역사보다는 떨어짐?
-
ㅈ댄건가
-
다른메디컬을갈까 1
아무리생각해도 20대를 통으로 갈아넣을 자신이 없다
-
이 재밌는걸 니들만 했다고?
-
진지한 고민 2
안녕하세요 현재 홍익대 자전에 재학하여 전전 진입예정인 05년생 25학번입니다....
-
짬시간에만 외움? 주변에 영단어 외우는 사람을 본 적이 없는데 다 알아서 외우고 있더라
-
반수 6
스스로 지옥같은 고삼생활을 다시 선택한다고 생각하니까….하 힘드네 진짜 미친척하고...
-
2016년에 많이 햇엇는데 이상하게 한 2년 정도에 한번씩 생각나서 들어옴
-
내일은 밀도 높은 공부를!! 문학 졸라해야지!
-
어제 대환장 드립잔치 한번 했으니까 오늘은 좀 진지하게 추천 받아요
-
수학 기출 정리했던걸로 칼럼이나 남기려고 하는데 막상 들어와보니 넘 고수들 많아서...
-
2등급은 받아야 되는데...ㅅㅂ 아직 단어장 Day 1도 못 외움
-
겉만 번지르르한 문제라고하면서 뚝딱 풀어내는데 괴리감이 드는군
-
수학 훈수받기 5
여기는 수학고수들이 많으니까 훈수좀 해주세요 남은기간 뭘해야할까요 기출이랑 엔제랑...
-
근데ㅣ 학문 할 쥴 모른다
-
강의듣는데 먼가 시간낭비느낌만들어요 션티 ㄱㄱ? 작수 영어 3이에요 도움좀><..
-
공부효율개박샇남
-
나노안인가ㅜㅠㅜ 1
윈터때 현역이와서 몇살이냐고 재수생같다고 그러드라...ㅜㅠㅠ 나는 내가 07년생처럼...
-
인정해주죠?
-
틀니 질문받음 3
원래 아이민 664177이었는데 실수로 없어졋음
-
3모 조져서 5모부터는 잘 봐야되는데 더 못 볼거 같음.. 내신기간동안...
-
진지하게 미적 20퍼 정도같은데
인정.
오...그렇군요

확통92점인 내가 할수있을까..수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.