이거 무슨 증명..? 논리..? 인지 아시는 분 계시나요.
게시글 주소: https://orbi.kr/00065609417
학교 시험문제 중에
위 식을 2x로 나눈 후, 미분해서 f(x)를 구해야하는 문제가 있었는데요...
저는 x=0일 시에 나누기를 사용할 수 없어서, x=0일 때와 x=/=0일 때로 나누어 계산을 하려했는데 답지를 보니 바로 2x로 나누어 f(x)를 구하더라고요?? 선생님께 x가 0일 수도 있는데 이게 가능한 것인지 물어보았더니, 일반적으로 불가능한 것이 맞으나 x가 모든 실수를 대상으로 할 때 하나 정도의 실수는 무시할 수 있다?? 뭐 이런 이론인지 증명인지가 있다는데...혹시 뭔지 아시나요? 그리고 이게 고등학교 수학과정에서 쓰여도 되는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잠이 안옴 3
ㅈ됏음 새우는 소리들림
-
요런 애들 있잖아 쪼꼬미 애들루 ㅎㅎ
-
슬슬 자러감 2
라면먹고
-
의문의 자사고 의문사 중간고사 성적으로 쇼앤프루브 할 예정
-
화1 화2 고민 1
24수능때 화1 2등급 맞은 물화러 입니다 다시 수능판으로 돌아오게 됐는데요 요새...
-
오랜만에 무물보 5
안받겠습니다
-
저도 의외로 잘하는거 14
-
나무 잘탐 졸라 잘탐 진짜로
-
걍 불행 행복 이런거랑 무관하게 새로운 인물들이 내 인생에 나타나서 도장깨기 중임 재밋어
-
시험 얼마안남아서 마지막으로 화학1 수특풀려고하는데 2점은 풀만하고 3점은 몇개뺘고...
-
제발 나이거너무먹고싶어제발
-
"마르크스 경제학 강의 복원하라" 연서명 나선 서울대생들 0
작년 가을부터 수요부족 이유로 미개설…"대학 근본적 목적 외면" (서울=연합뉴스)...
-
[칼럼] 2028 예시문항을 통해 본 2022 개정 교육과정 기반 국어 출제의 방향성 1
2028학년도 대학수학능력시험 예시문항 세트의 구성을 통해 파악할 수 있는 점들을...
-
하루에 실모 3개를 꾸준히 풀면 100점 나온다고 듣긴함
-
하지만 난 착하니깐
-
영어 0
이 해석본 저만 이해 잘 안되는거 아니죠?? 영어 번역은 잘 됐는데 내용이 계속...
-
이걸놓치다니..
-
이거 맞냐
-
~~~~
-
그보다 목소리가 좀 신기하네요 노래 좋다~
-
벌써 곧 4시네요 16
어쩐지 피곤했는데 벌써..
-
파데만 끝내고 오늘 아이디어 들어봤는데 뭔소린지 모르겠으면 킥오프랑 기생집 2.3점...
-
근 1년 중 제일 늦게까지 깨어잇는 듯
-
여기 츠케멘이 참 맛있어요
-
空の青さを知る
-
야와조기에서 0
야와만 지키는중
-
내 눈!!! 7
야갤 보다가 ㅎㅋㅅ 봤어....
-
오전에 운동 갈 수 있을까...
-
재종 편입 2
시대 재종이랑 s2 , 강대 본관 인문반 대기 넣어서 합격했는데 지금 가도 따라갈수...
-
일기 끗 5
님들 뒷담 잇다고 한 거 구라임 이제 진짜 자야대는데 커찮군
-
관심 있는 분들은 도전 ㄱㄱ
-
코노세카이와 단스호루~
-
하 습해
-
24수능 (찍맞X) 25수능 (78, 28찍맞) 5, 21, 22, 27, 29, 30 ㅁㅌㅊ
-
후배들한테 자꾸 연락와서 몬하겟음.. 자꾸 질문하는데 나도 잘 모르겠어서 억지 대답...
-
아오생화학시치 1
서술형다버리고 족보객관식만외워야지
-
예전같지않아
-
자야겠다
-
밤샘시작!!!!! 20
으아아ㅏ느느느아아아랑ㅇ아나아나나나아ㅏ아아아아아아!!!!!!!!!!!!!!!!!!!!!...
-
으으으 5
-
제발화요일에도와주세요제발
-
현역 수능 미적분으로 21252맞고 수학을 잘해서 5가 있어도 그 덕에 건동홍 경영...
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 다들 한 번씩만 봐보세요
-
왤케 습하지.. 0
제습기 킬까..
-
제주도 살고싶다 0
여기 너무 좋아요
-
심심띠예 0
ㅜㅜ
-
ㅈㄱㄴ
연속함수라서 되는거 아닐까요
x != 0이라 가정 후 계산
-> x가 0 좌/우극한으로 갈 때도 나눈 식은 성립
-> 어차피 연속이니 x=0일때도 같은 값 도출
그러니까
1. 위 식의 x->0+= x->0-이니 2x로 나누어도 x->0+= x->0-이다.
2. 연속함수이니 좌미분계수 = 우미분계수 = 함숫값이라는건가요...?
그쳐
근데 f(x)가 연속함수라는 조건이 있었죠..?
f(x)가 연속함수라는 조건은 없고, 인테그랄의 우변이 ax^5 + x^4 + ⋯ 이긴 했는데, 저는 인테그랄 내의 f(x)의 연속여부와 정적분의 연속여부는 상관이 없다고 배워서...
우변이 다항식이었으면 그냥 미분해도 되겠네요 자동적으로 연속+미분가능한 함수임이 표현된 것이니까
제가 f(x)의 연속성을 물은건 아마 우리 교육과정 내에서는 'f(x)가 연속이면 그에 부정적분을 씌운 함수는 미분가능하다'는 사실을 쓸 수 있어서 그랫서요
그건모르겟는데 f(x)가 연속이면 나눠도됌
인테그랄 안에 f(x)가 있다면 고등학교 문제에서는 '연속함수 f(x) ~~'라고 주어지긴 할텐데요..
혹시 질문 하나 괜찮을까요? 위에 쓴 식의 우변이 ax^5 + x^4 + ⋯ 라고 하면 반드시 f(x)가 연속함수라고 볼 수 있는건가요? 개념 공부 할 때 인테그랄 내의 f(x)의 연속여부와 정적분의 연속여부는 상관이 없다고 배워서 헷갈리네요.
발문에 f가 연속함수니 다항함수니 이런 말은 아예 없었나요?
위 식의 우변이 ax^5 + x^4 + bx^3 + x^2 + cx일 때 a,b,c와 f(x)를 구하라고 되어있었습니다
https://orbi.kr/00040517614
요 글 한번 참고해보시죠