2024학년도 9월 모의평가 수학 손풀이 (공통, 확통, 미적)
게시글 주소: https://orbi.kr/00064302706
2024학년도 9월 모의평가 손풀이_울고있는치타_(공통, 확통, 미적).pdf
다들 9월 모의고사 응시하시느라 수고하셨습니다.
참 오늘도 평가원은 전설을 써나가는 것 같습니다.
난이도는 사람들이 킬러 쉬워보인다고 역대급 쉽다는 얘기가 많은데, 절대 쉽습니다.
손풀이 모음
https://orbi.kr/00063035233 - 2021학년도 3월 학력평가 (2021.03.25. 시행)
https://orbi.kr/00063052332 - 2021학년도 4월 학력평가 (2021.04.14. 시행)
https://orbi.kr/00062957540 - 2022학년도 6월 모의평가 (2021.06.03. 시행)
https://orbi.kr/00062968319 - 2022학년도 9월 모의평가 (2021.09.01. 시행)
https://orbi.kr/00062922276 - 2022학년도 대학수학능력시험 (2021.11.18. 시행)
https://orbi.kr/00063031810 - 2023학년도 6월 모의평가 (2022.06.09. 시행)
https://orbi.kr/00063019030 - 2023학년도 9월 모의평가 (2022.08.31. 시행)
https://orbi.kr/00062878683 - 2023학년도 대학수학능력시험 (2022.11.17. 시행)
https://orbi.kr/00062886228 - 2023학년도 3월 학력평가 (2023.03.23. 시행)
https://orbi.kr/00062938685 - 2023학년도 4월 학력평가 (2023.05.10. 시행)
https://orbi.kr/00063171555 - 2024학년도 6월 모의평가 (2023.06.01. 시행)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
입력만 있음..
-
1 10 틀려서 45였는데
-
그래 사실 내가 1
에겐남이 되기위해 속눈썹을 붙이고 다닐 수도 있는거자나 그치
-
행복하세요.. 3
오늘은어제보다,, 나을거에요..
-
개늦었다 진짜
-
진짜너무하시네요 2
왜아무도댓글을안달아줘
-
네
-
연세 6
가고프다
-
다산 정약용...
-
질문 받습니다 31
없으면 질질 짤거임
-
고2 4
수시로 갈 생각인데 최저는 무슨 과목으로 맞추는게 좋나요?
-
심장은 두근대
-
전세계에 있는 모든 약을 구매하면 뭐게..? . . . 전세계약사기...
-
취업 난이도, 스펙트럼, 페이, 근무환경(지역이라든지..) 등등 다 고려했을 때...
-
하루 밤 새야함?
-
안자는사람 1
노래추천해주ㅜ
-
왜 새르비 죽어써 16
아직 3신걸????
-
내공부동기부여임시발 트라우마 존나게옴
-
얼마범
-
이거왜이리좋냐 2
개맛도리인데
-
그 사람은 상당히 유머러스한 존재일 것임 보통은 판다가 ~~를 판다까지만 생각하거든
-
사자야 사자를 사자
-
5년 전의 낙서 귀엽자나.....
-
지듣노 0
-
쿠팡 ^^ㅣ발거 2
일 이렇게 시키고 최저가 말이 되니? 밥값은 벌었다만 자고 인났는데도 뭔가...짜증나네
-
쿵짝짝쿵짝짝 1
따라리라라리 어 사쿠라네?
-
옯스타팜 1
@kickofkice
-
모르겠음 느는건지도 모르겠음
-
아왜외롭지 0
ㅜㅜㅜㅜㅜ
-
맛있노 ㅋ
-
잠이오질않아요 2
기분이 안좋아요..
-
하하하 모기새기 0
허공에서 손으로 모기 잡아서 죽였다 하하하
-
옯스타팟는데 2
맞팔할사람잇나 @kickofkice
-
얌전히 기다리기 1일차 12
얌기 기다리기
-
맞팔해라잉 2
seriniye
-
?
-
나 등장 7
인데… 다 갔나..
-
좆같다 3
그냉 즂같다
-
원점수로 6모 미적 88 물1 48 지1 39 7모 미적 96 물1 45 지1 45...
총평도 부탁드림미다
추가하겠습니다...
일단 그냥... 그렇네요.//
이거하느라 바빳구만 ㅊㅊ
미적은 언제 올라오나용??
지금 추가했습니다!!
그저 부럽다... 왜 우리 때는 21 30 몰빵이었을까 차라리 이게 훨씬 변별력있는듯
오히려 그게 나을수도 있습니다.
지금처럼 어디서 어려운 문제가 나올지 딱 보고 판별하고 넘어가는 능력을 요하지는 않았으니까요...
예전 30번 처럼 5%미만의 정답률은 시험으로서 변별력 가치가 없는건 이미 논문에서 검증 끝났는데요...
변별력 말구요 시험보는 학생입장에서요 ㅇㅇ 그만큼 편한건 팩트잖아요 애초에 21 30 맘편하게 버리고 가는 사람도 많았고
아 편하긴 한데 전 좀 억울했어요 ㅠㅠ 50분 남았는데 50분동안 낑낑대고 못풀었거든요 정말 열심히 했는데 결국 30번은 못맞추니 허탈감이 더 컸어요 상대적으로 지금은 열심히 한만큼 보상받는다 봅니다
아 그정도 등급대시면 그렇게 생각하실수도 있을 것 같아요. 시험마다 장단점이 있어서..
이런 시험 형식이면 초코냥냥님 같은 분들은 오히려 좋을 수도 있는데, 한 3등급대부터는 진짜 시험에 풀수있는 문제 찾아다니다가 끝나거든요.
전반적으로 난이도가 있다보니 실력이 애매하면 문제가 다 어려워서요 ㅋㅋㅋㅋ
장단점이 있는것같아요!!
29번 풀이 실.화.냐?
1번보다 풀이가 적은 29번 ㄷㄷ
ㄹㅇㅋㅋ
f'(-a)가 왜 0보다 크거나 같나요? -1일때 0인건 알겟는데...무조건그래야하나요?
중학교 과정입니다!
이차함수의 대칭축에서의 함수값이 0 이상이어야 f(x)가 계속 증가하기 때문에
실근이 존재하지 않는다는 내용을 사용한겁니다
10번에서 f'(-a)를 넣어줄때 왜 양수쪽 식에다 넣어주는건가용????
아 13번이요!
음수쪽 식에서는 -b>0이다를 사용하여 -1에서는 실근을 갖고, 그 외에는 음수범위에서 실근이 생기지 않는다는 조건을 사용한 것이고
양수쪽 식에서는 계속 식이 양수여야하기 때문에, 양수쪽 식에 대입한 겁니다.
f'(x) 식을 관찰해보면 사실 -b만큼 평행이동하고 음수쪽 식과 양수쪽 식은 대칭인 상태잖아요? 그거랑 같이 연결지어 생각해보면 될 것 같아요~
저도 27번 저렇게 나오던데 뭐가 문제일까요
오잉 마무리를 안해뒀네요
15/8 + 1을 하면 답 잘 나옵니다
그러네요 왜 마무리를 안해뒀지
미적 28번, f>=0이고 , fa=0 이면 f'a=0임을 이용한건 알겠는데, 저거 절댓값 있는데 저렇게 미분해도 되나요?
아 이제봤네요
미분??? 미분이 아니라 절댓값인데 미분가능하다는 조건 활용해서 나온겁니다.
제가 질문을 맞게 이해한걸까요??