수2 자작문제! (1000덕)
게시글 주소: https://orbi.kr/00063952052
첫 정답자 1000덕 드리겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요, 국어핑입니다!!! 칼럼 첫머리에 붙이던 이 인사말을, 오늘 마지막으로...
-
난 그냥 다른 거나 보다가 자야지 슬프다
-
오노추 0
-
자만추 하는법 8
ㅈㄱㄴ ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
미적 시발점 절반 넘게 끝났고 (하편 띰 두개 남음,, 부분적분 너무 어렵) 공통은...
-
현역 0
영어 인강 커리타는거 에반가요 시간 많이들라나
-
그거 구글에 내용 비슷하게 쳐보세요 특히 사설 풀다가 "난 이런 내용을 본 적이...
-
이시리즈 좋아하는 사람한텐 최고의 마무리 영화일듯
-
시반 또감? 2
ㅋㅋㅋㅋㅋㅋ
-
신병3 개재밌네 5
신병드라마를 재미있게보는 신병인 나(오늘복귀)
-
저번달에만 60정도 썼는데 또 살 게 생기네요 실모시즌이 두렵다..
-
11월말 예정이라는데 수능끝나고 보기 좋겠군
-
축제에서남친사귀는법 11
ㅈㄱㄴ
-
지금부터 노력하면 백분위 1 받을 수 있을까요. . .
-
현시점 오르비를 책임지시는 분임
-
깜더텅 문제가 생각보다 많아서 오래걸리는데 이거끝나고 평가원만 선별된걸로 한번더 ㄱㄱ?
-
수능 샤프 ㄷㄷ 13
이거 자꾸 쓸 때 두꺼워졌다가 얇아졌다가 개빡치는데 좋은 샤프 추천해 주실 수...
-
유니폼도 입었다 제발 부탁한다
-
난 진심이였음 3
2월달부터 계속 찾았다 . . .
-
본인 콕 2015년 클로 16년 런칭 브롤 18년 런칭 때부터 했었는데 요즘 겜...
-
내 첫사랑 썰2 8
4월 중후반쯤 큰 사건이 터졌다. 내가 다른 여자애랑 사귀고 있다는 헛소문이...
-
대대대대대 6
어 그래 형이야
-
김종익 파이널 모의고사 2025년 1회 8번문제 플라톤은 이상사회에서 통치자는 다른...
-
페이스북 감성 2
읽펨 좋펨 좋탐 최탐 X님이 X님과 함께 있습니다 X님과 연애중...
-
추억의 프렌치 블랙 14
캬
-
하 3
조졌네
-
평생 해본 SNS가 12
카카오톡 네이버 카페 오르비 이 3개 뿐이라는...
-
엉생가자 하면 반 이상은 성공이고 불판 중간에 된찌가 진짜 존맛이었는데
-
이것도 있었지 ㅋㅋㅋ
-
그때 허리까지 물에 빠진 채로 집에 걸어감 책 젖은채로 책상에 방치했다가 모든책에 곰팡이 생겼었는데
-
그래 1
지금 아프고 힘든 거 다 참고 이루고 싶은 거 다 이루고 난 뒤에 만나자. 그땐...
-
매년 스샷 찍어뒀노
-
나 틱톡햇엇는데 4
팔로워 1.4k인가 1.6k인가 까지 가봄 최고 좋아요는 25k인가 그럼
-
0명된지도 벌써 2년넘어서그런가 존나 익숙함
-
저는 역학적 에너지랑 실 장력문제에서 풀리긴하는데 계산이 너무 산으로 가거나...
-
친구야 현활인거 뜨는데 뭐하냐 문자 하나 보내는게 어렵냐? 학원은 뭔 학원이야 불질러버릴라
-
갤러리에 2017 2018 2019 대치동 사진 남아있는거 추억이네 1
코로나 이후로 다 바뀌긴 했음 저때만 해도 시대도 본관 카이로스만 쓰고 강대는...
-
지금 연대에 있을건데 ㅅㅂ꺼
1. 상황이 복잡해보이므로 t=-3 정도로 예시를 들어보자. 분모가 0으로 갈 때 전체 극한이 수렴하려면 분자도 0으로 가야하므로 f(-3)=-27임을 알 수 있다.
이후 식을 정리해보면 x->-3+일 때와 x->-3-일 때 모두 극한은 무한대로 발산할 것임을 알 수 있다. 다만 이차함수 f'(x)가 x=-3에서 극값을 갖는 것이 아니라면 두 극한은 같은 부호로 발산한다. 예를 들어 f'(x)가 x=p에서 극값을 갖고 -3>p라면 둘 모두 양의 무한대로 발산할 것이다.
그런데 주어진 극한은 t=1일 때만 양의 무한대로 발산한다 하였으므로 이렇게 되면 모순이다. 따라서 상황이 성립하려면 p>-3이 되어야 한다.
또는 전체 극한이 발산하는 상황을 생각해볼 수 있다. f(-3)이 -27만 아니면 분자는 부호 변동이 발생하지 않으므로 분모의 f'(x)-f'(-3)에서만 부호 변동이 발생할 것이다. 따라서 양의 무한대로 발산할 수 없다. 만약 f'(x)이 x=-3에서 극값을 갖는다면 f(-3)이 -27보다 큰 값을 가져야 조건을 만족할 것임을 확인할 수 있다.
2. t=0 정도로 예시를 들어보자. f(0)은 어차피 상수이므로 분모의 f'(x)-f'(-3)의 부호만 신경쓰면 되는데 2p+3과 0의 대소 관계에 따라 f(0)의 부호도 영향을 받는다. 만약 2p+3<0이라면 f(0)=0 혹은 f(0)>0이어야 하고 만약 2p+3>0이라면 f(0)=0 혹은 f(0)<0이어야 함을 알 수 있다. 그렇게 의미있는 정보는 아닌 것 같다.
3. t=2 정도로 예시를 들어보자. f(2)=8이라면 f'(2)=f'(-3)만 아니면 우극한과 좌극한은 각각 수렴하지만 두 값이 일치하지 않아 전체 극한은 발산할 것이다.
f(2)=8이 아니라면 앞의 상황과 마찬가지로 f'(2)-f'(-3)의 부호와 f(2)와 8의 대소관계를 엮어 생각해야할 것이다.
4. 이제 t=1일 때를 생각해보자. 극한은 양의 무한대로 발산해야하고 양의 무한대로 발산하는 '유일한' 경우여야 한다. 만약 f(1)이 1이 아니라면 마찬가지로 f'(1)-f'(-3)의 부호에 따라 대소관계에 영향을 받을 것이다. f'(1)-f'(-3)>0이라면 f(1)<1이어야, f'(1)-f'(-3)<0이라면 f(1)>1이어야 상황을 만족한다.
근데 대충 특수한 상황이지 않겠는가, 그럼 왠지 f'(1)=f'(-3)일 것이고 f(1)=1일 것이다... 아닌 것 같다
어렵네요 ㅋㅋㅋㅋ 나중에 다시 고민해보겠습니다
t=-3일때 극한값이 존재한다? 라기 보단 t=-3일때는 '양의 무한대로 발산하지 않는다' 로 생각하면 풀 수 있습니다!
음의 무한대로 발산하는 경우도 있으니까요ㄷㄷ
1?
아닙니다ㅠ