'모든'의 논리적 오류 | 6평 미적 28번
게시글 주소: https://orbi.kr/00063247483
※ 6월 10일, 글 내용을 좀 더 상세하게 영상으로 풀어서 올렸습니다.
0
독해와 논리를 가르치는 이해황입니다.
이번 미적 28번 논란이 흥미로워서 짧게 글을 써봅니다.
1
2024학년도 6월 모의평가 수학 28번(미적분)
실수 전체의 집합에서 연속인 함수 f(x)에 대하여
{f(x)}²+2f(x)+1이 x=1에 대칭이라면,
{f(x)}²+2f(x)+1 = {f(x)+1}²이므로
{f(x)+1}² = {f(2-x)+1}²이 성립합니다.
따라서 "모든 x에 대하여 f(x)=f(2-x) or f(2-x)=-2-f(x)"라고 할 수 있습니다.
그런데 이로부터 "모든 x에 대하여 f(x)=f(2-x) or 모든 x에 대하여 f(2-x)=-2-f(x)"라고 할 수는 없습니다.
2
"모든 사람은 남성이거나 여성이다."가 참일지라도
"모든 사람은 남성이거나 모든 사람은 여성이다."가 도출되지는 않습니다.
왜 그런지 바로 이해가 되는 분들도 있겠지만, 그렇지 못한 분들을 위하여
사람이 p, q 둘만 있는 가능세계1)를 살펴보겠습니다.
각주 1) 가능세계는 2019학년도 수능 국어영역에도 나왔고 PSAT/LEET에 모두 나온 적 있는 중요 논리학 개념입니다. 만약 이 개념을 잘 모른다면 가장 쉽게 이해하는 '가능세계' [두뇌보완계획100] 3분짜리 영상을 참고해주세요.
이때 가능한 세계는 아래 표와 같이 4가지입니다.
"모든 사람은 남성이거나 여성이다."는 w1, w2, w3, w4 모두에서 참입니다.
반면 "모든 사람은 남성이거나 모든 사람은 여성이다."은 w1(모든 사람이 남자)와 w4(모든 사람은 여자)일 때만 참이며 w2, w3일 때는 거짓입니다.
정리하자면, "모든 사람은 남성이거나 모든 사람은 여성이다."가 참이면
"모든 사람은 남성이거나 여성이다."는 참이지만, 그 역은 성립하지 않습니다.
3
논리학자들은 '모든'을 ∀으로, or(이거나)는 ∨으로 나타냅니다. ∀는 all을 뒤집은 것이고, ∨는 or를 뜻하는 라틴어 vel에서 가져온 것입니다. 참고로 and(이고)는 ∨를 뒤집은 ∧으로 나타냅니다.
지금까지의 논의를 기호를 활용하여 간결하게 나타내면 다음과 같습니다.
∀x(Ax∨Bx) ≢ ∀x(Ax)∨∀x(Bx)
구체적으로는 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx), ∀x(Ax∨Bx) ← ∀x(Ax)∨∀x(Bx)로 분리하여 생각할 수 있습니다.
4
2019학년도 LEET 추리논증에 이러한 변별을 묻는 문제가 나온 적 있습니다. 지금까지의 논의를 잘 따라왔다면, 아래 고난도 문제를 단박에 풀 수 있습니다. 핵심은 ㄷ입니다.
논리훈련이 되어 있지 않은 분들은 ㄷ을 적절하다고 판단합니다. 그런데 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx)이므로 ㄷ은 적절하지 않습니다. 즉, "모든 환자에게서 병원균 α와 β 중 적어도 하나가 검출된다"가 참이라고 해도, "모든 환자에게서 병원균 α가 검출되거나 모든 환자에게서 병원균 β가 검출된다"가 참이라고 할 수 없습니다. (참고로 정답은 ② ㄴ입니다.)
5
지적 호기심이 있는 분들을 위하여 양화사 분배에 대한 몇 가지 성질을 적어두겠습니다. 2에서 제가 표를 그린 것처럼 가능세계를 중복없이 누락없이 떠올려보면 충분히 혼자 이해할 수 있을 겁니다.
①∃x(Ax∨Bx)≡∃x(Ax)∨∃x(Bx)
②∀x(Ax∧Bx)≡∀x(Ax)∧∀x(Bx)
③∃x(Ax∧Bx)≢∃x(Ax)∧∃x(Bx)
④∀x(Ax∨Bx)≢∀x(Ax)∨∀x(Bx)
이때 ∃는 "어떤 ~가 있다"는 뜻으로, there exists에서 가져온 기호입니다.
참고한 자료
1. 2024대비 6월 모평 미적분 28번 대칭성 풀이의 논리적 오류에 대하여
2. 논리개념 매뉴얼5.0(이해황, 2023) (2의 설명은 이 책에서 가져옴)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
만들면 안될까 오래된 생각이다
-
어흥
-
급 우울 8
뭐든간에 진전이 없네
-
아예 안 먹으면 밥생각안나는데 간식같은 저녁 믝으니까 계속 먹음
-
정시 가나다군 제도 ㄹㅇ
-
난 그냥 사학과 가서 세계각지로 여행다니다가 교사할거 같음
-
2027년 의대열풍으로 인한 사교육 과열로 인해 너도나도 실력없는 강사들이 양산되기...
-
내가 가려는학과를 깠음 공대아니면 ㅂㅅ이라던데 치킨집이나 차리라고 하던데 아
-
ㅈㄱㄴ
-
철학과 갔다고 까이고 그런가요..?
-
질문해주세요 곧 대표로 교육감상 받음 ㅎㅎ
-
젭알
-
나랑 친구할 사람 11
없겠지 뭐
-
13번까지는 수능때처럼 허무하게 쉬운 문제들로 가득함 다들 BL모 많이 관심가져주세요
-
진짜 딱 1. 사학과 2. 철학과 3. 국문학과 였음 문이과 과목 다 두루두루...
-
궁금
-
약간 변형해서 냈었는데 여기서 부분점수 3점 나가서 97점 나옴ㅜㅜ
-
화1 빈집인 거 체감된다… 수학의 1/10도 안 올라옴
-
바꾸길 잘한듯 지구 되게 재밌네
-
ㅋㅋㅋㅋ 개 웃기네
-
정승제 선생님????? 11
???
-
쉴래 이제 안해 5
집중도 안되고 걍 쉬자 이거 어떰 애니 안보는데 재미써보임
-
17녀라고 한 다음에 아무 아파트 주소대서 거기로 오라고 함 상대는 40대였음
-
과탐 실모 ㅇㅈ 7
ㅅㅌㅊ ??
-
오르비 여러분들은 어떨게 해결하시나요? 자꾸 비교하게 됩니다
-
무물보 2
-
문학 18분컷내고싶다 작품 제대로 읽고 바로 띡띡띡 딱 선지에서 시간 무한으로 아끼기
-
기습홍보 0
이 게임 완전 쉬워요^^한판해요
-
멘날 듣는 음악만 듣고 맨날 똑같은 장소를 일정한 시간동안 다녀오고 그 안에...
-
수요가 적을까 막말로 킹반인 소양에서 철학보다 세계사가 더 유익하지 않나
-
물리하다보니까 단순암기로 끝낼 수 있는게 많다는 것이 생각보다 좋은거엇음
-
국어 마르고 닳도록 3회독, 수특, 수완, 실모 수학 수능 기출의...
-
이번 여행에선 후쿠오카, 구마모토, 가고시마, 미야자키까지 방문한 도시마다...
-
김성호 현강 0
김성호 미적 현강 대치동 수강생 몇명정도 인가요
-
비키니 4
너 저리 안 '비키니'?? ㅋ
-
유튜브에서 종종 나오길래 함 복용해볼까 고민중...
-
이세계 유유자적 농가나 봐야지
-
맞팔구 0
생윤똥글꾼입니다
-
다들 맛저하세요 4
맛있는거 잘 챙겨 드시고 제 몫까지 두 배로 행복하세요
-
친구들이 5
저보고 노윤서 닮았다는데 남자가 닮으면 이상한거아닌가요?
-
이거 주면 하냐 9
난 깎음
-
비교하기 힘들겟지만 그래도 비교해보자면 어떤게 더 많나요? 둘중 하나 버리게요
-
ㅋㅋㅋㅋ
-
정시파 영어 0
영어 공부 해여되나요? 다른과목들이 노베라.. 3등급 나올 정도로만 맞추면 될까요
수학까지 잘하시는 국어 강사님...ㄷ
해설강의 찍고 편집할 때면 이 세상 다른 모든 것들이 흥미로워져서 큰일이에요 ㅎㅎ
제가 공부할때와 같은 모습이시군요..
x가 하기 싫을 때는
x보다 더 하기 싫은 것을 찾으면 좋더라고요. ㅋ
오 ㅋㅋ 써먹어 보겠습니다
그저 GOAT...
고맙습니다. :)
와 설명 진짜 잘하시네요. 이해가 쉽게 되네요
고맙습니다. PSAT/LEET 수험생들에게 하도 질문을 많이 받다보니, 자연스럽게 설명이 진화(?)했습니다. ㅋ
비트겐슈타인의 논리철학논고를 통해서 1차 술어논리에 대해 혼자 공부할 때가 떠오르는 글이네요. 잘 읽고 갑니당
재미있게 읽어주셔서 고맙습니다. :)
논고를 통해서 1차술어논리요?
대단하시네…
어찌보면 당연히 여자와 남자가 동시에 존재할수있다는 생각이 드는데 이걸 수학으로 !
집합과 명제를 좀 현란하게 확장해서 수능/PSAT/LEET를 가르치고 있습니다. ㅋ
쉽게 말하면 모든 사람이 남자이거나 여자일수 있다에서 "모든 사람은 남자" or "모든 사람은 여자"가 도출되진 않는다
네, 그리고 "한 명 뽑아봤더니 남자라고, '모든 사람은 남자'라고 단정해서도 안 된다. " 정도를 추가할 수 있습니다.
요새 수학강사는 국어도 잘하네
오르비 신규 수학 강사 이해황입니다. 잘 부탁드립니다.
10대 때 로즈마리 수열을 투고한 적 있습니다.
https://oeis.org/A026644/a026644.html