2023 수능 수학 손풀이 (공통, 확통, 미적)
게시글 주소: https://orbi.kr/00062878683
2023 수능 수학 손풀이_울고있는치타.pdf
다들 스캔본은 별로라해서 패드를 샀습니다... 이거하려고...
5월 모의고사 갑자기 하면 글씨체 난리날 것 같아서 연습하려고 해봤어요!
패드에 글쓰는게 쉬운게 아니네요 ㅜㅜ 꿀팁 있으신가요
피드백 환영합니다! 저도 지금 다시 보는데 글씨가 많이 작은 것 같네요 ㅎㅎ;
공부에 도움되길 바라겠습니다!
5월 모의고사 손풀이 기다려주세영
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 안녕히주무세요! 10
오르비 잘자~
-
난 존예 여르비인데 14
왜 아무도 나한테 쪽지 안함
-
좆됏네 진ㅁ자
-
이거 진짜임? 7
5모 기준 미적 80 vs 확통 92 실력 비슷해보임?? 표점은 확통 92가 10점...
-
열품타가 1시간 21분이네 ㅎㅎ..
-
문득 궁금해짐
-
이게 왜 다 오이 10
ㅇㅁㅇ
-
뭔가 음함수 미분인줄 첨에
-
에밀리아임..
-
갈바닉 부식으로 실험 하려고하는데 부식이 얼마나 오래걸릴지 모르겠어서 바로 확인 할...
-
에에휴
-
오르비 안녕 14
-
새벽4시 리그경기를 위해~~
-
군대에서 생활과윤리 2주 공부하고 백분위 93나온 썰 (현자의 돌 활용법) 0
생활과윤리는 놀랍게도 한 달만에 2등급이 나올 수 있는 과목입니다 (제가 직접...
-
오늘공부 0
국어:ebs고전시가4개복습 고전소설2개학습 수학:스탠주간지 풀기, 25강기원모2회,...
-
이번 과탐 무슨 과목이 젤 ㄱㅊ을거같은지 선택 ㄱㄱ 9
나는 일단 생지
-
엔티켓 이해원 빅포텐 지인선 커넥션풀고 하사십풀고있는데 양이 부족해서 같이 병행해서...
-
근데 듣기 3개 틀림 ㅋㅋㅋㅋㅋ
-
더프제외 현역때 국어실모 한번도 안풀어봄 ㅎㅎ나 성장했겠지? 기대가된다 기대가 내...
-
1.인강 듣고 나서 문풀하고 안풀리는거 다시 보는거 2.문풀하고 논리에 허점있거나...
-
작수 쉬고 올해 참전하려는데 왜 작년 6평 29번에 난데없이 해석을 요구하는 선지가 있는거죠...
-
철학지문 시러 11
극혐;;
-
공통은 22번 말고 너무 쉬웠고 미적도 28번 말고는 어려운게 없었음 근데 22번...
-
님들 전문 다 외우고 다님? 아니면 걍 시함장에서 일일이 다 해석함? 전문 ㅈㄴ...
-
존나 맛도리
-
이해원 이로운 볼텍스 4규s2 지인선 서킷 렛츠고
-
확통사탐 대학교 0
국어 89 수학 98 영어2 탐구 96 96 정도면 공대로 어디까지갈수있나요?
-
표지 디게 예쁘다 근데 문제수가 너무 적네
-
생각보다 오르비에 언급량이 적어서...
-
야옹 3
냥~~
-
생윤하다가 개화나서 작년에 찍먹 했던 동사로 돌아가려는데 어떨까여..역사 제대로...
-
국어 지문은 27
복잡하고 정보량이 많은 거보다 단순한데 생각을 요하는 게 훨씬 나음요. 제가...
-
동생 200등 중에 100등함; 집안분위기 좆창남 저 좀 받아주세요
-
. . . 7
하버드대학교 맘스터치 학과 26학번 오로라
-
안녕히주무세요 8
오늘은 7시에 일어날래요
-
김승리 풀커리 타고 있는 지금 좀 기출 분석이 덜 된 것 같아서 기출문제집사서...
-
몇인가요
-
와 젖탱이봐라 침고이네 17
하 진짜 ㅈㄴ 피곤하네 다들 오늘 하루 고생하셨어요
-
강하영 29번 풀이법 이거 왜 작년 평가원부터 안 먹힘? 제가 작수 참전 안 해서...
-
나도씨발그냥확통할걸 왜깝쳤지 아씨발진짜
-
저능해지는거같은데 기분탓임?
-
수학과 4
모든 과 다 되고 수학과 안 되면 대학 낮추기
-
수열시러
-
제가 모의고사 풀 때 문학이랑 화작에 65분 정도 쓰는데 화작,문학 합해서 3-4개...
-
머임 현우진 12
올해 킬캠 해강으로 첨 듣는데 상당히 빠져드네..
태블릿 적응기라... 부족한게 많아요
날카로운 피드백 부탁드리옵니다...
도움되는 글 감사합니다
잘 보고 가요~ 이웃 신청합니다 ^^

글씨를 조금 더 키워보면 좋을거같아욤흠 글씨 키워야할것같긴한데 다들 다운받아서 보지않나요..? 제가 태블릿으로 봐서 확대하면 커보이는건지 모르겠네요...
그건 그래염 여기서 보기엔 그러네염
도움되는 글 감사합니다
개추...
깔끔하시당
꺄 치타옵하 머시써요
오 미적 28번 저렇게 삼각형을 확장해볼 생각을 할 수도 있군요
전 현이 같다고 준 조건보고 저 확장이 먼저 떠올랐는데, 이 풀이는 뒤져봐도 찾기 힘들더군요 ㅎㅎ
현의 길이가 같다 -> 원주각이 같다 -> 원 위의 점 E를 떠올려 삼각형 CEQ를 떠올리자 -> ASA 합동
을 이용한 후 삼각형 EOD와 닮음임을 이용해 무한등비급수에서 닮음비로 넓이비 처리하듯 계산..! 어쩌면 이게 정말 출제자가 의도한 풀이일 수도 있겠네요!! 저는
'현이 주어짐 -> 원의 중심에서 현에 수직이등분선'과 '각을 많이 앎 -> sin법칙'으로 주어진 그림 내에서 해결하려던 생각이 첫 풀이였던 것 같네요
기트남어..
기트남어도 해죠오
기트남어...는 고민해보겠습니다
시간이 남으면 해볼게요..!!
14번 ㄷ 사고 과정은 어떻게 하셨어요?
전 현장에서 극한이 중첩되길래 뇌절 왔는데..
극한 중첩이라기보다는...
[-3,1]구간에서 증가하게되면 x=-3을 확인하고 최소를 갖는것을 확인할 수 있고
[-3,1]구간에서 감소하는 함수라면 1에서 최소를 가질텐데, x=1의 오른쪽 왼쪽 극한을 확인할 필요보다는,
*x=1에서 음수의 값을 갖지 않는 것만 확인해도 사실 최소가 없다는 것을 확인할 수 있습니다*
x=1에서 양수가 나오면 밑에 감소하는 함수에서는 x=1의 값이 존재하지 않으므로 최소가 없구나를 이것만으로도 확인할 수 있죠!
그래서 사실 그래프는 보여주기 위해서 그린거고, 극한 중첩도 필요없는 문제라고 할 수 있겠습니다...ㅎㅎ
아하...
이해되었습니다
너무 감사해요 ㅠㅠ
제 부족한 설명이 한번에 이해되셨다니 감사합니닷 ㅎㅎ