[이동훈t] 부분에서 전체 보기 (+231128미적분) 미적분
게시글 주소: https://orbi.kr/00062706480
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 수능에서
반복되는 테마인
부분에서 전체 보기
에 대해서 알아보겠습니다.
작년 수능 미적분 28번
한번 보실까요 ?
(이후의 글은
아래 문제에 대한
풀이의 일부를
포함하고 있으므로
문제를 풀고 나서
계속 읽기를 바랍니다.)
이 문제를 읽고 나서
바로 들어야 하는 생각은
다음과 같습니다.
(f는 쉽고)
g를
직사각형+삼각형으로 구할 것인가. (A)
아니면
큰 직각삼각형에서 작은 직각삼각형을 빼서 구할 것인가. (B)
어느 쪽이 더 쉬울 지를 결정해야 한다.
A의 풀이를
아마도 많은 분들이
선택하였을 것이고,
좀 더 와일드 한 성향의 분들은
B의 풀이를
선택하셨을 것입니다.
왜냐하면 딱 보기에도
S1+S2 가 아니라
S-S3 의 느낌이 드니까요.
A 의 풀이를 따르면
아래와 같이
보조선을 긋고,
직사각형과 직각삼각형의 넓이의 합을
구하면 됩니다.
이 풀이는 각과 길이를 결정하는 것,
극한 계산을 하는 것이
어렵지 않으므로
자세한 건 넘어가고요.
B 의 풀이를 적용하기 위해서는
아래와 같이 큰 그림을
볼 수 있어야 합니다.
위의 그림에서
두 직각삼각형
CQD, SRD 의 닮음비는
2 : 1+theta
이므로
문제에서 주어진 극한 계산은
다음과 같습니다.
(theta -> 0+ 일 때,
sintheta를 theta로 근사한 것입니다.)
B 의 풀이에서 보면 ...
직각삼각형에서의 닮음비가
출제 의도로 보입니다.
요컨대
이 문제에서도 반복된 테마인
" 도형의 넓이를 구할 때,
S1+S2 (부분+부분) 또는 S-S3 (전체-부분)
중에서 어떤 쪽을 택할 것인가 ? "
는 올해 수능에서도
100 % 출제될 것이므로
기출 문제를 가지고
충분히 연습해야 할 것입니다.
일요일 저녁에도
열공하는 당신이야 말로.
최후에 웃으리 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
탈릅할까 말까 6
.
-
어느 정도로 공부해야 되나요? 많이 어려운가요??
-
요근래 학생들 중간고사가 끝나 과외를 많이 알아봅니다!! 과외알바를 생각하시는...
-
전에 올렸던 문제의 정답은 9입니다! [난이도 : 쉬운 4점 ~ 평이한 4점]...
-
5등급제 0
혹시 설명해주실 분... 화석이라 지금 고1 애들이 뭘 배우고 있는지 읽어봐도 잘...
-
기생집4점 점프 빼고 다 풀엇는데 다음 커리로 넘어갈지 점프 끝내고 시작할지...
-
흠흠 6
오늘 석촌호수 다녀올가 메타몽도 오늘까지내
-
풀고 어떤지 휭까점...
-
세특 관련해서 질문드려 봅니다.. "하나의 송신기에서 동일 주파수로 전송할 때,...
-
[속보]이재명 "4년 연임제 도입으로 대통령 권한 분산…국무총리는 국회서 추천" 8
제21대 대선 공식 선거운동 일주일째인 18일 더불어민주당 이재명 후보는 대통령...
-
헬스갔다 피아노 가야지 14
기분좋게 휴일을 시작하자
-
고3 (수시최저러)이라 내신시험기간이랑 세특도 있고 3모전후로 탐구과목바꾸고...
-
[속보]이재명 "감사원 국회로 이관…공수처장·검찰총장·경찰청장 국회 동의 받아야" 1
후속기사가 이어집니다
-
후속기사가 이어집니다
-
이거보고 함수로 푼 사람들은 어떻게 함수로 풀 생각을 떠올리셨나요?
-
수능까지 같이 가고싶다고 해줘서 넘 기뻐용 여기에 대단한 쌤들 많지만 ㅎㅅㅎ 한가지...
-
도야 2
훗
-
다 휴릅하면 12
여긴 내가 지배한다
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
여름방학 때 시킬건데 국어는 고등학교 공부가 처음인데 바로 강의 듣게해? 아님 고1...
-
제가 미래에 살곳이랍니다.
-
건동홍라인 공대 1학년 마치고 육군 입대했습니다. 마지막 수능은 재수때인...
-
적자들은 참고!!
-
프사 설정하고 싶은데 자꾸 파일이 크다길래 100kb까지 압축했는데도 안되네요...
-
시대인재 수과학 브릿지모의고사와 브릿지전국모의고사중에 시간없을때 둘중 하나만...
-
ㅇㅂㄱ 1
-
5.18 민주화운동 45주년 기념
-
지하철 놓침 3
ㅅㅂ
-
“좋은 기업 사서 평생 보유”… 가치투자 원칙 남기고 떠나는 전설[글로벌 포커스] 0
세계 최고의 투자자 중 한 명인 워런 버핏 미국 버크셔해서웨이 회장 겸...
-
드릴수1하사십 0
드릴 수1 정답률 90퍼정도되는데 하사십으로 넘어가도 되려나요 아님 이로운 풀고 하사십해볼까요 ㅠ
-
지하철 놓칠 뻔 2
휴
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
새르비 맞팔구 4
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 28
.
-
D-41ㅇㅈ 4
내일 더 빡시게
저도 작년에 9모 13번 근사로 풀어서 맞췄던게 생각나네요

함수의 극한의 근사적 계산은 ... 차수만 신경쓰면 ... (가끔 식이 복잡해질때도 있지만) 적용되지 않는 경우는 거의 없지요. 위의 문제도 근사적인 계산을 허용하고 있는 것을 보면 ... 출제자들이 이 계산법을 막는다는 생각은 들지 않습니다. :)저도 수1도형 풀때 근사쓸때가 있네용

그건 ... 상당히 와일드하군요. ㅎ나중에 칼럼 써보고 싶은데..ㅋㅋ 9모 13번은 진짜 참신하게 풀어서 그럴 실력이 안되네요 확통 기출은 시작도 안해서 힝
저도 작년 9모 13번은 근사적으로 한 번 도전해 보겠습니다. :)