[Team PPL 칼럼 78호] 열심히 공부하면 되겠죠? - 수학
게시글 주소: https://orbi.kr/00062649300
안녕하세요 PPL의 회장, 수하기 팀원, 너만의 수학 홍승혁입니다. 일단 제목의 질문에 답 부터해드리면 ‘아니오’ 입니다. 특히나 수학에서 많이 보이는 열심히‘만’ 하시는 분들에게 도움이 되었으면하여 이 글을 씁니다.
학생들의 공부량을 체크하다보면 공부량은 많지만 성적이 안오르는 학생분들이 종종 보입니다. 왜그럴까 의문을 갖고 계속 관찰, 탐구를 해 본 결과 다음과 같은 공통점들이 있었습니다.
기본
1. 개념, 공식
개념, 공식을 까먹는 것은 문제를 풀 상황이 아님을 의미합니다. 적어도 시험을 볼 때, 문제를 풀 때는 해당하는 공식은 항상 외우고 있어야하고 개념은 말로 풀어낼 수 있어야합니다.
이 문제는 2019년 3월 고3 모의고사 나형 26번입니다. 이런 유형의 문제를 풀 때 밑조건과 진수조건의 개념을 헷갈려서 문제를 푸는데 어려움을 느끼는 학생도 있었습니다. 이런 기본문항들을 계속 풀어나가면서 개념, 공식에 대한 기본적인 이해를 탄탄하게 만들어야합니다.
2. 계산실수를 심각하게 여기지않는다.
‘계산실수로 틀렸어요’, ’계산을 잘못했어요’ 제가 가르칠 때 질문받다보면 50퍼센트 정도 이 말을 듣습니다. 왜 틀릴까요? 스트레스, 소음 등의 이유로 집중력이 분산되는 상황도 있겠지만 제일 큰 이유는 검토하지 않는 습관때문이 큰 것 같습니다. 계산을 처음부터 정확하게 잘 해내면 문제가 없는건 당연합니다. 하지만, 계산이 틀렸음에도 그 자리에서 바로 계산이 잘 맞았는지 검토만해도 절반의 학생들은 계산실수가 눈에띄게 줄었습니다.
물론 이 검토 과정때문에 ‘시간이 많이 걸리지 않냐’ 하시는 분들도 계실 수 있습니다. 하지만, 사고의 과정은 기본이고 정확히 답을 내는 것이 논술, 수능에서의 수학이라고 본다면 시간이 조금 더 걸려서 정확하게 맞추는 것이 애매하게 계산하여 틀리는 것보단 이득이라고 말씀드릴 수 있을 것 같습니다.
실전
1. 개념을 경시한다.
기본의 1번과는 다르게 실전에서의 1번은 개념을 이용하여 문제를 다 풀어내는 능력을 말씀드리는겁니다. 밑의 예를 보시죠
이 문항은 2013학년도 6월 고3 평가원 모의고사 가형 16번입니다.
문제에서 핵심적으로 사용되는 개념이자 풀이는 미분계수의 정의입니다.
미분계수 정의에 대한 식을 잘 암기하지 않았다면 푸는데 많은 시간이 들었을 문제입니다.
다음문항도 보시죠
이 문항은 2020년 3월 고3 모의고사 나형19번입니다. 이 문항도 코사인 법칙만 정확하게 외웠다면 식을 세우는데 무리가 없었을 것입니다. 식을 세우면 문제는 바로 풀립니다.
이와 같이 실제로 출제되는 문항들은 개념, 공식만 외우고 있다면 무조건 해결할 수 있습니다.
2. 식, 그래프에 어색함을 느낀다.
학생분들 중 가끔 문제상황은 정말 깔끔하게 설명하는데 식으로 풀어내질 못하여 문제를 질문하는 분들이 계십니다. 혹은 그래프 그리는 것을 어려워 하는 분들도 계십니다. 개념이나 공식만 외운다고 수학점수가 오르진 않습니다. 실제로 그래프가 내가 생각한대로 나오는지 확인해보고, 세운 식이 그래프로는 어떻게 표현되는지, 그래프가 식으로 표현될 때는 어떻게 해석해야하는지 생각해봐야합니다.
이런 부분에 어려움을 겪는 분들께선 대표적인 그래프 개형을 공부하실 때, 알지오매쓰나 지오지브라같은 프로그램들을 이용하여 그래프가 실제로 어떻게 그려지는지 확인해보는 걸 추천드립니다.
2022년 3월 고3 모의고사 10번입니다. 이 문항의 경우 g(x)의 그래프를 먼저 그리면 훨씬 빠르게 풀어낼 수 있습니다. 더불어 삼차함수의 경우 비율관계를 연습하면 더 쉽게 그래프를 그릴 수 있을테니 마찬가지로 연습해야합니다.
3. 유형화
같은 풀이방향, 공식, 개념을 이용하는 유사한 문제들을 유형화하는 것은 고득점과 빠른 문제해결을 위한 핵심이라 할 수 있겠습니다. 하지만 단기기억이 장기기억으로 전환되는데에 노력과 시간이 조금 더 필요하신 분들께선 이런 부분에 어려움을 겪습니다. 학원에서는 진도를 앞으로만 계속 나가고, 테스트는 일시적이고, 지나가면 유형을 잊어버리는 결과가 초래되기도 합니다.
그래서 주기적으로 앞에 배웠던 내용들을 복습하고 비슷한 문제가 모여있는 문제집을 사서 주기적으로 유형별로 한 두 문제씩 푸는 과정을 거치면 공부에 도움이 되실거라 생각합니다. 실제로 저는 제 학생들에게 앞 부분에대한 복습으로 테스트를 계속 진행하고, 문제를 숙제로 내줍니다. 진도와 별개로 이렇게 반복적으로 학습하면 확실한 효과를 볼 수 있습니다.
기출을 열심히‘만‘ 풀고 수업을 열심히 듣기’만‘하고 자신의 부족한 점을 보완하지않고 양치기로 해결하려는 분들에게 이 글을 마치며, 도움이 되셨기를 바랍니다.
칼럼 제작 |Team PPL 수하기팀
제작 일자 |2023.04.09
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아이디어 수강후 기생집 4점까지 일단 다 한번씩은 풀어봤습니다. 아 물론 점프문항...
-
강매당한 이투스 모의고사 환불 신청하는 게 나을까요? 3
제가 더프, 이투스 모의고사 2개를 한 달에 2번 볼 것 같은데 지금 이 시기, 제...
-
실모 뭐해야함 0
학교에서 D.Archive,constant, D.Fine, D. Fine...
-
이제 본인 영역 아니어서 답 못달아줬다를 넘어서 그냥 뉴비 공부 질문글에 관심이...
-
시대인재 물리 0
시대인재라이브로 현정훈 듣는데 강좌만 뜨는데 볼텍스랑 브릿지는 어디서 살 수 있나요?
-
리센느인지 뭔지 4
광고 ㅈㄴ 뜨네
-
사실 환급때문에 그냥 ebs 답 보고 넣음 ㅎ
-
주변 학원들 전화해보니 다 마감됐다고해서 어쩔수없이 집에서보거나 기차타고...
-
언급이 아에 없네
-
아오 환율시치 3
아.
-
들어올때마다 바뀌어 있음;,
-
확통 미적 기하
-
국어 고정1이면 7
정법 지금 시작해도 만점 나와요?사탐에 감이 아예 없음 누가 국어 잘하면 정법하라길래...
-
국어 양 6
국어에서 양을 늘리라는게 양치기를 하라는건가요? 그럼 기출가지고만 양치길ㄹ...
-
1. 집근처 잇올 70만원정도 화장실 맘대로 못가는게 좀 에바같음.. 6.9모 따로...
-
후반 회차는 개어려워 ㅠ
-
[유튜브 23만뷰 돌파!!!] 수능 영어 풀어주는 AI 프로그램 개발? [노병훈 영어강사, Roy] 수능 CDI 풀이법 프로그램, 로블정음 영어독해법 0
이 칼럼으로 영어로 고민하고 힘들어하는, 많은 학생분들에게 새로운 인사이트와 희망을...
-
칼럼 뭐쓰지 0
소년애 지문 뜯어보기 이런거 할까 아님 강화약화의 일반적해법이나
-
국어 자습용ㅊㅊ 0
새기분 듣는중인데ㅜ 학교가는날엔 인강듣기 좀 버겁기도하고 혼자서 생각하고 풀만한...
-
정승제. 개념의 신. 공수2. 중 명제파트만. 보려고 하는데요 (선행용으로) 문제집...
-
진짜 마음이 싱숭생숭하네.... 아효......
-
22도 23도네 2
다다음주면 30도될듯
-
늦게 찾아온 만큼.... 3월말에 잠깐 여름 찍먹하고 다시 겨울이었다가 이제야 계절이 정상화된 느낌
-
버스로는 25분 정도 걸리는 거리인데 정류장이 제 집에서 10분 정도 걸리는 거리에...
-
.
-
13 14 21 28 29 계속 틀리는데 뭘 해야좋을까요 21 29은 그렇다 처도...
-
정답률 파악을 위해 문항마다 투표 올립니다. +국어 해설 작성에 능한 야인을 찾고자...
-
시발 존나 싼티나잖아~
-
”수학 익힘책“
-
수능대비 찐입문n제라고 봐도 손색이 없음 개념바로 배운 상태에서 유형+직관적인...
-
1. 사설모나 기출 등을 풀어본다. 2. 끌리는 포인트를 찾는다. 3. 그...
-
우리가 처음만났던 그때의 향기 그대로~~
-
그냥 공부를 안할 가능성이 높음 하루에 샤프를 드는 빈도가 적을지도
-
남정네들이랑 꽃 잠깐 보고 다시 들어와서 우렀어
-
참가비 걷기
-
일단 말도 안되는 굇수들이 수학 문제를 촤라락 풀고 자랑질을 할 것 이다 이때 너는...
-
완벽하게 풀고 설명할 수 있다? 꽉 찬 2등급은 나올듯
-
상품 더 뿌려야겠네요 12
의문의 후원릴레이로 인해 많은 참가 부탁드립니다 받은 덕코는 다 쓰는 게 도리겠죠
-
뭐 형광펜 쳐라 밑줄 쳐라 적어라 이런걸 딱 어디부터 어디까지 쳐라 아니면 어디다...
-
육진방언 글로 3만 덕 넘게 벎 캬캬
-
왤케 웃기지ㅋㅋㅋㅋ
-
2025학년도 한림대 입시결과(수시, 정시_의학과 포함) 0
2025학년도 한림대 입시결과(수시, 정시_의.. : 네이버블로그
-
모의고사는 어케 되는거임? 연기?
-
젖지 대머리에 빠져서 할수가없어
-
1. 투자할 돈을 모은다. 2. 1을 절대 주식에 넣지 않는다. 3. 2를 반드시...
-
점심 메뉴 조합 추천좀 16
이번달 배달 안먹기 챌린지중
-
헛소리하길래 뒤질래?라고 했더니 이러는데 사귈까요?ㅇㅇ
-
흑흑
첫번째 댓글의 주인공이 되어보세요.