[이동훈t] 3월 수학, 이동훈 기출 비교
게시글 주소: https://orbi.kr/00062546333
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 3월 수학 전 문항과
(단, 너무 쉬운 문제 제외)
2024 이동훈 기출을
비교해 보겠습니다.
기출이 어떻게 변형되어 출제되는지
꼭 익혀야 하는 수능 실전 개념은 무엇인지
반복되는 중요한 풀이에는 어떤 것들이 있는지
...
등등을 알아보겠습니다.
N수생 분들에게도 당연히 도움이 되겠지만
아직까지 기출에 대한 경험이 충분하지 않은
고3 분들에게 큰 도움이 되리라 생각합니다.
힐 위 고 ~!
<공통 (수학1+수학2) >
문제를 보자마자
이차함수의 정적분의 공식,
이차함수의 대칭성,
넓이의 분할과 합
이렇게 3가지가 떠오르지 않았다면
기출에 대한 연습이 부족한 것입니다.
아래는
2024 이동훈 기출 수학2에 수록된
이차함수의 정적분 공식에 대한
증명입니다.
이 문제를 보자마자
아래의 그림이 떠오르지 않는다면 ...
연습 부족입니다.
아래는 2024 이동훈 기출 수학2에
수록된 수능 실전 개념입니다.
19년에 출제된
교육청 기출의 순한맛 입니다.
이 문제에 대한 설명은 아래의 글로 대신합니다.
[이동훈t] A-B=(A+C)-(B+C) (+230311) 수학1
딱 보자마자 작년 9월 모평 문제가 떠올라야 합니다.
풀이법도 동일합니다.
합성함수의 방정식
이차함수의 대칭성
삼각함수의 실근의 합
이렇게 세 가지가 결합된 전형적인 문제입니다.
이 수준의 문제는
쎈 B 에서 충분히 찾을 수 있고요.
2024 이동훈 기출에서는
합성함수의 방정식에 대한 설명을
여러차례 해두었습니다.
ㄱ, ㄴ은 연속성, 미분가능성에 대한
교과서 적인 풀이를 적용하시면 되겠구요.
ㄷ에서는
이차함수의 정적분의 공식을
적용하면 계산을 단축할 수 있습니다.
아래는 2024 이동훈 기출 수학2의
예제 설명입니다.
딱 보자마자 작년 수능 15번을 떠올리게 되지요.
작년 수능 문제의 영혼 없는 버전이라고 보시면 됩니다.
표 또는 수형도를 그리면서 각 항에 올 수 있는
수를 판단하면 됩니다.
이건 특정한 이론이 필요하다기 보다는
경험적인 것이긴 한데요.
다만 증가와 감소를 반복한다는 점에서
주기함수 임을 알 수 있긴 합니다.
(이에 대해서는 6월 전에 따로
칼럼을 올려드릴 것입니다.)
이 문제는 아래의 글로 대신합니다.
[이동훈t] 평행이동을 해도 변하지 않는 성질 (+230320) 수학2
이 문제를 풀면
반복되는 항을 포함한 두 등식을 얻게 됩니다.
2번 이상 반복되는 항은 반드시 치환해야 하는데요.
이에 대해서는
2024 이동훈 기출 수학1에서
자세하게 설명해두었습니다.
이 문제 보자마자 아래의 9모 문제가 떠올라야 합니다.
위의 문제에
절댓값이 붙은 4차함수의
미분가능성이 결합되었다고
보시면 됩니다.
아래는 이 주제에 대한 기출문제의
풀이입니다.
(2024 이동훈 기출 수학2 수록)
이런 풀이과정은 반드시
익혀두어야 하겠지요.
수능은
그때그때 생각나는대로
푸는 것이 절대 아닙니다.
< 확률과 통계 >
교과서 연습문제에도 있는 문제입니다.
위, 아래 똑같죠?
다른 공, 다른 주머니에 해당하는 문제입니다.
(이 주제도 꼼꼼하게 학습해두어야 합니다.)
그냥 뭐 ... 같습니다.
J040 기출에 원순열을 결합한 문제입니다.
새로운 유형이라기 보다는
새로운 결합에 해당합니다.
J030 처럼
(1) 수(대상)을 선택하고
(2) 이를 나열한다. 이때, 같은 것이 있는 순열의 수를 이용한다.
라는 관점에서 같습니다.
이와 유사한 문제들은 워낙 많습니다.
이 문제 역시 ...
새로운 유형이라기 보다는
새로운 결합입니다.
아래의 두 문제를 묶었다고 보면 되겠습니다.
+여사건 포함
그래서 풀다보면 ...
어디선가 써본 풀이 같고 ...
뭐 그렇습니다.
< 미적분 >
속도의 관점에서 an = 3^n 으로 두면 됩니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
역시 다항함수의 속도에 대한 문제입니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
치환에 대한 문제인데요.
사실 1을 모두 지우고, 근사적인 계산을 해도 좋습니다.
이에 대한 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
수열의 합과 차 (수학1) + 수열의 극한
이 물리적으로 결합된 문제입니다.
위의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
0<a<1, a>1 로 나누는 행동을
반드시 손에 익혀두어야 하는데요.
아래의 문제에서 이에 대한
연습을 하게 됩니다.
(2024 이동훈 기출 수학1 수록)
이 기출과 연관되어 볼 수도 있고 ...
사실 부등식 주고 자연수의 개수를 구하라는 문제는
워낙에 많으니까요. (특히 교사경에...)
수열의 극한값 구할 때에는
아래의 실전이론에 대한 이해가 반드시 필요합니다.
아래의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
이 문제는 사실상
도형의 확대, 축소에 대한
이해를 평가하고 있습니다.
아래의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
< 기하 >
이 문제를 읽자마자 아래의 문제가 떠올라야죠.
이 문제 보자마자 아래의 문제가 생각나야 합니다.
추가적인 설명은 아래의 글을 참고하세요.
[이동훈t] 한 각을 공유하는 두 삼각형 (+230330기하) 수학1 + 기하
위의 두 기출문제는
삼각형(사다리꼴 포함)에서의
닮음을 평가하고 있습니다.
이차곡선에서는
삼각형(사다리꼴 포함)에서의
닮음비를 자주 묻습니다.
이 문제는
이차함수의 정의와
한 꼭짓점을 공유하는 2개의 삼각형를
결합된 것인데요.
이에 대한 설명은 2024 이동훈 기출 수학1에서 해두었습니다.
쭉 읽어보신 분들은 아시겠지만 ...
올해 3월 학평 수학은
기출과 수능 실전 개념에서
절대 벗어나지 않습니다.
평가원 기출 3회독,
(+수능 실전 개념 포함)
교사경 기출 2회독
이면 6월에서
당연히 1등급을
쟁취할 수 있습니다.
하고 싶은 공부를 해서는 안됩니다.
해야 하는 공부를 하길 바랍니다.
오늘도 열공 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수분감 1.5회독?(틀린거만 다시품) 했는데 한완기 교사경 푸는게 나을까요 아니면...
-
순대6천원 7
맛있음 근데 3시간 뒤에 먹어서 퍼드러짐
-
올해 수능 물2 만점 백분위 몇 예상하세요? 물론 나와봐야 알겠지만요.
-
ㅎㅇ 2
ㅂㅇ
-
예전에 만든 문제들 모아서 모의고사나 하나 올릴까요? 11
수1, 수2, 확통, 미적, 기하 전과목으로 한회분은 만들 수 있을텐데... 근데...
-
밥먹으러나가야징 6
저메추!
-
벽에 끼엇음 1
뒤에 누가 잇는거같음
-
트랄라랄라 트랄루루 이거랑 애쉬톤 홀의 모닝루틴 이거 둘밖에 안 뜸
-
어디가 취업 더잘해요?
-
어떻게 푸나요 ㅜㅜ
-
수학노베질문 0
수 1 수 2에서 어렵다하는 유형 (함수와 그래프, 삼각함수 등등) 일단 푸는...
-
필노 입갤 0
4회독 on 한국어 뭉개는건 챗평ㅋㅋ 김범준 스블 필기노트
-
기하랑 생2 하려하는데 새로 공부한다는 것에대한 부담감과 해야할 게 많아서 오는...
-
벚꽃이 그렇게도 예쁘디 바보들아
-
서술 범주 파악은 강평ㅋㅋㅋㅋ 이 답글 꼭 달림
-
벽느껴졋음 0
정벽임
-
해석 보는데 머리 깨져서 여기다 부탁드려봅니다 ㅜㅜㅜ 해설도 혹시나 해서 참조해요
-
근데 버스에 사람 왤케 없지 다들 차 타고 놀러갔나요
-
국어를 못하면 수능날 자체를 망치며 영어를 못하면 미친듯이 찝찝하고 사탐을 망치면...
-
학점 던질까 0
학점 자리 한 번 남겨줘? 할려면 할 거 같은데 하자니 귀찮은데
-
수학컷 신기한거 2
어려우면 생각보다 많이 안떨어지고 쉬우면 생각보다 컷이 안높음 저만 그렇게...
-
문학이랑 스키마 구조도 없는 게 조금 아쉽네요 물론 해설은 최곱니다
-
고3 내신인 수학 과목이 2개인데 하나는 등급 안나오는 기하---> 이건 ㅇㅋ 다른...
-
혼자서 생각해 본 수능 수학 확통/미적 표점차(틀린 거 있으면 댓글 부탁) 0
확통과 미적의 표준점수 차이는 Team 미적과 Team 확통의 공통표준편차와 선택...
-
장난하나... 가망 없으면 못 하겠다고 해야지 ㅅㅂ..
-
개씨발
-
가능충 1
작수 미적 3컷인데 올해 확통 백분위 98 가능?
-
진학할까 고민중
-
소개팅 1
사람 북적북적한 서울 지하철 입구에서 만나 카페가서 대화좀 하고 피방에서 배그좀...
-
수시는 1학년 때 버리고 정시만 바라보고 달리다가 국어가 점점 내려가서 지금은...
-
근데 기하얘기가 주제일때만임
-
오 6
오
-
거의 풀엇가 9
아닌가
-
지문 1개씩 있는건 속도랑 정답률이 장난아닌데 권고 시간보다 2-3분씩 단축되고...
-
이 출처 하나찾아주시는 분 마다 스벅 기프티콘 하나씩 보내요 ㅠㅠ 제발 찾아주세요 ㅠㅠ !!!!
-
수학 실모 0
강K가 서바보다 난이도 높나요? 강K 풀어보고싶은데
-
아 국어못하는데
-
대 기 은 0
기출분석 고트
-
엄
-
잇올 머야 0
전국 시대컨 수요조사 왔네 다같이 시험치면 좋겟다
-
고양이 8
-
대머리만 외쳐도 독포주던 그젖지 어디갔어요
-
국어 유기 중 4
사실 사탐 공부가 곧 국어 공부 아닐까?
-
붐비는 시간 대가 있을까요? 저 때에 비해서 글이 리젠되는 속도가 많이 죽은 것 같네요
-
정의란 무엇인가... 정의의 상대성...
-
아 진짜
-
트럼프의 무차별 관세폭탄으로 버크셔도 이틀새에 마15퍼 떨어졌을 정도로 개박살난...
-
기숙 퇴원생이고 2월 25일에 들어가서 휴가날 나왔어요 질문받아요
-
내 향수 어떰 3
달고나의 달달한 향이랑 바닐라 무더기로 왕창 때려박은 향임 지속력 최소 5시간임...
첫번째 댓글의 주인공이 되어보세요.