물리1 칼럼) "문제풀이는 유연한 사고로부터 시작된다"
게시글 주소: https://orbi.kr/00061875946
안녕하세요
드디어, 제대로 된 칼럼입니다.
사실 지난번에 올렸던 칼럼의 경우,
쓰다보니 내용이 칼럼ot처럼 되어버려서
진짜 ‘물리학’ 칼럼을 바라셨던 분들이
아쉬워 하셨으리라 생각됩니다.
( 죄송합니다.. 근데 저도 칼럼은 처음이라..)
그래서 이번엔,
정말 ‘물리학’공부를 하시는데 있어서
도움이 될법한 내용을 써야겠다는 마음으로
칼럼 주제를 정하는데 장고의 시간을 보냈습니다.
우선 지난 칼럼에서 말씀드렸듯
저는 물리학 문제풀이를 하는 데 있어서
여러분들에게 도움이 될 법한
소위 ‘행동가령’ 또는 ‘도구’에 대해 알려드릴 생각입니다.
그리고 오늘은
그러한 구체적인 도구 또는 행동강령을 알려 드리기에 앞서서
그러한 것들을 배우기 전에 선행되어야할,
가장 기본적인 문제풀이 '자세'에
대해 알려드릴 생각입니다.
앞으로 제가 알려드릴 행동강령, 도구
또는 여러분들이 학원을 다니시면서 배우실 스킬까지,
그 모든 것들을 적용하기에 앞서
거의 모든 물리 문제들(특히 역학문제)을 해결해 나가시는데 있어서 관통하게 될 가장 기초적이지만 중요한 자세입니다.
'문제풀이는 유연한 사고로부터 시작된다.’
오늘의 주제입니다.
엥
유연한 사고?
그게 뭔데??
유연한 사고가 뭔지 알아보기 위해
우선 유연하지 못한 사고에 대해 알아봅시다.
보통 물리를 처음 시작하시는 분들이
문풀을 처음 접하게 되면
'정형화된 풀이'에 맞춰 문제를 풀어냅니다.
예를 들어보죠.
1단원 중
속도 가속도 문제입니다.
아주 간단한 문제부터 살펴보겠습니다.
우선 문제를 보니
처음속도, 나중속도, 그리고 가속도가 주어졌습니다.
대부분의 학생들,
심지어는 해설지 그리고 물리 선생님들께서
'등가속도 공식 3번'을 이용해서 푸실 겁니다.
"2as=v2-vo2이니까,
2x2xs=36-4,
따라서 s는 8이 되겠군"
사실 가장 정확하고 빠른 풀이입니다.
그러나 문제는
특히 물리를 처음 시작하는 학생들의 경우
이 문제에서 그저 공식 대입하기 급급할 뿐 이라는 겁니다.
결국 이 문제에서 얻어가는 것은 '공식 대입하는 법'
뿐이라는 것이죠.
이러한 모습이 유연하지 못하게 문제를 풀어내는 모습 입니다.
그저 해설지에 써있는 가장 빠른 풀이에 맞춰서
자신의 사고를 교정하는 것이죠.
물론 공식에 때려 넣는 것이
이 문제에서는 가장 효율적인 풀이라는 것 쯤은 저도 잘 알고 있습니다.
그러나
좀 '유연하게 사고해보자' 이 말입니다
그래서 그게 어떻게 하는 건데?
유연하게 푼다는 말은
위에서와 같이
가장 정형적인 풀이를 떠나서
가장 기본적인 것들로부터 자신의 풀이를 도출 해 나가는 것입니다.
그리고 기본적인 것으로부터 풀이를 도출해낸다는 것은
쉽게 말해 문제에서 주어진 조건으로부터
가장 기본적인 '정의된 개념'을 떠올려서
문제를 풀어내는 것입니다.
가장 기본적인 '정의된 개념'은
어떤 문제유형이 나오던
변하지 않고 쓸 수 있기에
비교적 '유연하다'고 말씀 드리는 것이구요.
나아가서 제가 지난 시간에도 언급해 드렸듯
모든 행동영역들은 결국 정의된 개념에서부터 파생됩니다.
따라서 우리가 문제를 유연하게 풀다보면
자연스럽게 행동영역들도 정립해 나갈 수 있다는 것이죠.
아직 감이 잘 오지 않으신다고요?
아까 그 문제를 정의된 개념을 야무지게 이용해서 풀어보겠습니다.
(밑에서 풀이과정 정리 해드릴 거니까 일단 쭉 따라오십쇼)
우선 문제에서 우리에게 a와b사이의 거리를 묻고 있군요.
아하 근데 마침 등가속도 운동을 하고 있는데,
처음속도 그리고 나중속도가 나와있으니
우리는 평균속도를 구해줄 수 있을 것 같습니다.
자 그럼 거리를 구하기 위해서 우리에게 이제 필요한 것은
'시간' 조건 뿐입니다.
어 근데 우리가 아직 쓰지 않은 문제 조건이 있네요
문제에서 우리에게 가속도를 주었습니다.
가속도의 정의된 개념을 떠올려 보죠.
'속도변화량/시간'
아하
근데 마침 문제에서
우리에게 처음속도&나중속도로
속도변화량울 알려주고 있습니다.
헐 대박.
그럼 우리는 가속도를 알고 속도변화량을 알기에
시간을 구할 수 있겠네요.
.
.
.
.
자 그럼 위의 풀이를 정리해 가며
행동영역을 정립해봅시다.
우선 가장 큰틀에서 본다면
우리는 거리를 구하기 위해
v=s/t라는 정의된 개념을 떠올려 줬습니다.
문제에서 알려준 것은
처음속도&나중속도(첫번째 조건 )였기에
우리는 이를 통해 v, 즉 평균속도를 알수 있었죠
자 그럼 v를 구했으니
이동고리s를 알려면
우리는 적어도 운동 시간 't'를 알아야 겠죠?
자 그럼 시간 t를 구해봅시다.
그리고 나서 살펴보니 문제에서
가속도를 알려 주고 있습니다(두번째 조건 )
가속도의 정의된 개념(속도변화량/시간)을
떠올려 보니
마침 가속도의 정의된 개념에도
시간 't' 가 있네요!
아 그럼 우리는 속도변화량만 알면 시간을 구할 수 있겠습니다.
(가속도는 속도변화량/시간인데 그중 가속도와 속도변화량을 알면
시간을 구할 수 있다는 말입니다.)
근데 문제에서
처음속도&나중속도를 알려주고 있으니(첫번째 조건 )
우리는 이를 통해 속도변화량을 구할 수 있었고
이제 최종적으로 시간을 구해주면
a에서 b까지 거리를 구하는데 필요한 것들은 다 구한 셈이 되겠네요.
.
.
.
.
자 그럼 어떤 행동영역을 정립 할 수 있을까요
우선 우리는 '첫번째 조건'인 처음속도&나중속도를 통해
무려 두가지를 알아낼 수 있었습니다.
1.평균속도
2.속도변화량
평균속도 는 v=s/t라는 평균 속도의 정의된 개념에서 쓰였고
속도변화량 은 가속도의 정의된 개념에서 쓰였었습니다.
따라서 우리의 첫번째 행동영역은 이러합니다.
"처음속도와 나중속도가 주어지면, 평균속도 그리고 속도변화량을 통해 가속도를 구해주자"
자 이제 두번쨉니다.
우리는 위 풀이과정에서 속도와 가속도 각각의 정의된 개념을 떠올리던 중에 재밌는 사실을 발견했습니다.
둘 다 정의된 개념에 '시간'이 들어 간다는 것이었죠.
우리는 이 점을 이용해서
가속도의 정의된 개념을 통해 알아낸 시간 조건을
속도의 정의된 개념에 넣어줘서 최종적으로 거리를 구해낼 수 있었습니다.
따라서 다음과 같은 문풀코드를 정립할 수 있갰네요.
"v=s/t와 a=속도 변화량/t는 t를 매개로 서로를 유기적으로
연계하며 풀이하자"
.
.
.
.
자 어떠신가요
맞습니다.
아까 말씀드린대로
이 문제의 경우 너무나 기본적인 문제이기에
차라리 공식을 때려넣는 것이 훨씬 효과적입니다.
그러나
위와 같이
'기본개념을 바탕으로 유연하게 사고'하며 풀다보면
공식만 때려넣고 말았을 때는 얻을 수 없었던
행동영역이나 문풀코드도 얻을 수 았게되고
이런 식으로 정립해둔 행동영역이나 문풀코드는
후에 고난도 문제를 풀때에 빛을 발합니다
여기서 자연스럽게 다음 칼럼예고 합니다.
다음 칼럼에선 오늘 풀었던 저 기본적인 문제에서 얻어낸
행동영역이 작년 수능문제 에서 쓰이는 모습을 보여드리겠습니다.
.
.
.
.
휴 칼럼을 쓴다는 개 쉬운 일이 아니네요.
우선 약속 시간 지키지 못한 점 무지하게 죄송합니다 ㅜㅜ
무튼 오늘도 다들 물리 열공하시고
저는 다음칼럼으로 찾아뵙겠습니다.
늘 그랬듯 오늘도 물리학도들의 화력 기대하고 있겠습니다.
다음에 만나요
안녕~
?물리 과외문의 &자료 인스타
-> https://www.instagram.com/physics_silkold
0 XDK (+1,000)
-
1,000
-
사문 질문 0
공유성은 특정 사회 성원이 공유하는 모든 후천적 행동 양식은 문화적 동질성에...
-
정답좀 알려줘 ..
-
..
-
갓셍살아야되는데
-
교수 쏘리.
-
왜 자꾸 117나오는거지…
-
사탐 뒤늦게 시작함. 생윤: 개념 한바퀴 돌리기 지루함. 처음엔 현자의 돌보다가 쌩...
-
ㅈㄱㄴ
-
얼버잠 0
다들 잘자요
-
오케이 인정 3
시발 문제 잘내네
-
수학문제가 안풀릴때마다 너무 분해서 집중이 안됨 오늘도 문제집 찢을뻔했는데 화를...
-
1조까지 옴..
-
졸피뎀중독걸릴거같아서 심한 거 아니면 참는중인데 진짜 스트레스
-
규칙적이게 해
-
-x 넣어서 빼는 것보다는 합성함수로 인식-> 양변 극소 동일함을 이용하는 게...
-
야식시킴 1
hoe
-
현실성은 없지만 만약 이거 뜬다면 나머지 개ㅈ박아도 성불할듯…
-
생명 실모 트레일러랑 한종철 풀어보신 분 계신가요!! 0
디카프 트레일러랑 한종철 철두철미 중 하나만 추천해주신다면 어떤게 좋을까요!...
-
빵굽습니다 0
-
잠안오네 조졌다 3
커피를 너무 먹었나...
-
남은기간 .. 정법 벼락치기로 .. 뭘할까요
-
걍 사설안할래 1
진짜 멘탈 ㅈㄴ 나감
-
괜히 사문했나 1
차라리 동사할껄 그랬나 사문 너무 많이 함
-
오늘부터 8
도서관에서 눈치 안보고 달려야겠다 오늘 계속 나도 모르게 후방주시하게 된듯
-
어릴적 꿈에 가득차서 열정적인 나는 어디가고 번아웃에 지쳐 왜 오르지 못하는가 왜...
-
시중에 푼 실모중에 제일 평가원같은듯. 문학 어려운데 답 근거가 명확하고 전반적으로 합리적인 느낌
-
개어렵네. 23분 걸려서 맞춤 역시 건너뛰길 잘했음
-
22번×12문제 0
아 오늘 참 열심히 공부한 듯 패드를 두고와서 인강도 못 듣고 양치기 바로 조지기 ㅋㅋㅋ
-
혹시 한국어가 좆망했을때를 대비
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이해원, 킬캠, 양승진모고, 김기현 컬렉션, 빡모 난이도 비교하면 어때요?
-
또 오랜만에 공부하네요 공부 20일도 안하고 시험 치겠네요 ㅋㅋㅋㅋㅋ 정신 못...
-
상황이해는 다 했는데 계산에서 망가짐 ㅍㅍ
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
-
국어 실모 ㅊㅊ 2
한 6개 파밍해야하는데 추천해주샤요 이감 파이널 12회 전회차랑 더프만 풀어봄...
-
지금 저의 제일 큰 문제가 수학이라고 생각이 드는데 전 통통이고 6모 수학...
-
예비고3이라서 가볼까하는데 고2후반부터 인강듣고 거의 혼자 했는데 독학...
-
하긴 할건데 가볍게 하고 넘어가는게맞을까요?? 올수보고 판단하면 되려나요
-
d-9 4
-
삐딱하게 살아 보려고 함 삐딱하게 살려고 마음먹으니까 괜찮아 다 괜찮아졌어
-
건대 공대가는거랑 취업에서 누가 더 유리함?
-
11덮 국어 3
풀기에 괜찮나요??? 저번주에 풀려고 했느데 저번주에 김승모 완전 망하고 또...
-
성격차이—-—- 남성양육비, 재산분할 남자의 외도——- 남성양육비, 재산분할 여성의...
-
20220722 4
이거 왤케 어렵지 다른 보통의 22번보다 더 어려운 듯 231122랑 난이도 면에선...
-
제보를 한답시고 pdf에 할X스를 담아 보내면 되지 않을까... 예를 들어 킬캠...
-
ㅇ 살려줘애줘 형만튀ㅛ면ㅇ다인? 아발아
-
KK 모의고사 지신 모의고사 뭐로 부르지
-
겁나많음 그냥 풀 수 있는데까지 풀어야지…
-
사자후 한번 질러야되나
많은 도움 됐습니당
아직 운동량 충격량하고 있어서…저 공식을 모르니까ㅋㅋㅋ속도 변화량이 4니까 시간은 2초고 평속은 4이니 이동거리는 8이다 라고 풀었네요 갑자기 얻게된 유연한 사고……암튼 다음 칼럼도 기다리겠습니당!!
결국 짬이 차면 3번공식을 쓰게 되어있지만
시작할 때는 다양하게 접근해보는게 중요하다는 뜻이군요
백 번 동의합니다 ㅎㅎ
정말 정확히 제 의도를 이해하셨네요
긴 글 읽어주셔서 감사합니다:)
가속도 2m/s^2, 2m/s에서 6m/s로 3초동안 가속했군
첫 문제에서 바로 오답
물리는 과탐 과목중에 개념이랑 문풀이랑 괴리감이 제일 커서 힘든감이 좀 있음..
맞습니다.
제 지난 글들을 보시면 아시겠지만,
저도 그 점에 맞춰서 칼럼 작성을 하려고 하고 있어요
앞으로도 칼럼 작성 할 예정이니
많은 도움 받으시길 바랍니다. ^^
이거완전 김성재네요
오..메가스터디 선생님 말씀하시는거죠?
비슷하다니 영광입니다:)
다만 저는 대성 키즈라 그분 인강을 듣진 않았습니다.
딱히 물리 인강을 많이 듣지도 않은 것 같네용. 재수학원을 다녔어서...
대성키즈시면 방인혁t 들으셨나요?? 저 그 분 들을 예정인데 어떤가요?
죄송합니다 너무 늦게 봤네요..
저는 강대에서 재수를 해서
방인혁 쌤과 김덕근 쌤께 현강을 들었습니다.
방인혁쌤 깔끔하게 잘 가르치십니다.
오티 들어보시고
본인께 맞는 선생님인지 판단하시고 수강하시는걸 추천드립니다.
유연한 사고 남탓하지 않기
유연한 남탓 사고하지 않기
혹시 이런부분을 언급해주시면서 가르쳐주시는분 아시나요? 방인혁 선생님 역학강의듣고있는데 뭔가 이런부분은 안알려주시는거같아서 평균속도 저부분도 혼자 저렇게 정리했는데 혼자 정리하려니 좀 불안한 면이있네요. 일관된 태도로 일관되게 먼저 푸는법을 배우고 싶어서요./그리고 혹시 비율관계를 잘 정리하는 그런 방법이있는지 여쭙습니다.