2022학년도 고3 10월 미적분 30번 해설
게시글 주소: https://orbi.kr/00061354089
그냥 여담으로 드리는 말씀이지만 평가원 모의고사와 교육청 모의고사는 년도를 세는 기준이 다릅니다.
평가원 모의고사/수능은 대학수학능력을 측정하고자 하는 시험으로, 시험을 치는 년도의 다음 해에 대학에 입학할 학생들을 응시 대상으로 하기에 시행 년도에 1년을 더한 햇수를 표기합니다. 예를 들어 2022년에 시행된 6월/9월/수능은 2023년에 대학에 입학할 학생들의 대학수학능력을 측정하는 시험이기에 2023학년도 6모/9모/수능 이렇게 표기합니다.
이와는 대조적으로 교육청이 주관하는 모의고사 시험들의 경우 정식 명칭이 전국연합학력평가인데, 전국연합학력평가는 '그 해의' 전국의 학생들의 수준을 가늠하기 위한 시험이기에 시행 년도를 그대로 표기합니다. 즉 제가 오늘 올릴 문제는 2022년 10월에 시행된 학력평가 미적분 30번 문제인 것입니다.
다들 알고 계시리라 생각합디다만 의외로 헷갈리기 쉬운 사항이기에 이러한 서론을 적어보았습니다.
---------‐-----------------------------------------------‐-----------------------------------------------‐-----------------------------------------------‐-------------------------------------
30번 문제입니다. 가형 30번과 요즘 미적분 30번을 비교해보면, 상대적으로 문제의 호흡이 상당히 짧아진 대신 핵심적인 요소들을 정확히 파악해야 한다는 점은 비슷합니다.
우선 문제를 읽어보면, (가) 조건을 해석하는 것이 관건으로 보입니다. 간혹 가다가 적분식을 미분할 생각을 하지 못하고 문제를 결국 풀지 못하는 경우가 종종 있는데, 적분식을 포함한 관계식이 주어져 있다면 우선 미분을 해보는 것 역시 굉장히 중요합니다. 이렇게 적분식이 주어져 있을 때 미분을 통해 상황을 파악하는 문제들이 유독 올해 교육청 시험에 많은 편이었습니다. (3월 22번, 4월 22번) 아무튼, 양변을 x에 대해 미분하면...
이러한 관계식이 나옵니다. (G(x)는 g(x)의 부정적분입니다.) 여기서 양변을 미분하였을 때 오른쪽 항이 -g(3a-x)이 되지 않는 이유는 합성함수의 미분에 의해 속미분을 했을 때 -1이 곱해지기 때문입니다.
관계식을 잘 살펴보면, g(x)가 x=3a에 대해 선대칭이라는 것을 알 수 있습니다. ln(x)는 증가와 감소가 변하지 않는 일대일대응 함수이므로 f(x)+f'(x)+1이 x=3a에 대해 선대칭인 이차함수라는 것을 알 수 있겠군요. 편의상 f(x)+f'(x)=h(x)라 하면 g(x)는 항상 0보다 큰 값만을 가지므로 h(x)+1은 항상 1 이상, 즉 h(x)는 항상 0보다 큰 이차함수라는 결론을 내릴 수 있습니다.
따라서 h(x)의 대칭축이 x=3a임을 파악하면 이와 같이 h(x)의 식을 세울 수 있습니다. 하지만 아직은 정보가 너무 부족합니다. '상수' a의 값이 구해져야 문제를 풀 수 있을 거 같은데 아직 a의 값을 구할 수 있는 관계식을 찾지는 못했습니다. 어떻게든 a의 값을 구해봐야 할 거 같은데, g(x)를 가지고 할 수 있는 이야기는 이 정도가 끝으로 보입니다.
여기서 한 가지 말씀드리자면, 적분식을 보았을 때 우리가 할 수 있는 행동은 크게 2가지입니다.
1) 미분한 뒤 도함수의 정보를 파악한다.
2) 적분식에 적당한 수를 대입하여 값을 추려낸다.
1번의 경우에는 수2와 미적분 모두에서 공통적으로 요구되는 사항이지만, 2번의 경우에는 과거 일부 가형 킬러 문제에서 요구되었던 발상입니다. 왜냐하면 수2에서는 합성함수의 미분법을 배우지 않기에 적분구간에 x의 계수가 1인 일차식만을 넣을 수 있어 대입과 관련된 이야기를 하기가 상대적으로 어렵기 때문입니다. 방금 적분식을 미분하여 g(x)에 대한 정보를 파악했으니 이제 적분식에 적당한 수를 대입할 차례입니다.
'모든 실수 x에 대해' 두 적분식의 값이 같다고 하였으므로 이는 x에 대한 항등식입니다. 무엇을 대입하여야 할까 좀 생각해보니, g(x)가 항상 0보다 크다는 점에서 착안하여 위끝을 동일하게 설정해준다면 아래끝의 값이 서로 같을 것이고, 아래끝을 동일하게 설정해준다면 위끝이 서로 같을 것이니 이를 통해 a를 구하면 되겠군요. 저는 편의상 아래끝을 동일하게 2a로 맞춰주겠습니다. 물론 위끝을 동일하게 2a+2로 맞추셔도 a값에는 변화가 없으니 참고 바랍니다.
그러면 앞서 언급한 h(x)의 식은 h(x)=(x-3)²+k가 되겠군요. (나)에서 g(4)=ln5라 하였으니 h(4)+1=5가 되므로 h(4)=4가 되겠군요. 그려면 k=3이 나오네요. 이제 끝났습니다. 답을 슬슬 낼 시간입니다. f'(x)를 구해야 하므로 구해보면...
f'(x)는 이와 같습니다. 이제 진짜 답을 내봅시다.
따라서 m=-4, n=16이 되어 m+n=12임을 알 수 있습니다. (EBSi 기준 정답률 8.2%)
개인적으로는 이 문제가 정적분의 주요한 성질들을 굉장히 잘 묻고 있다고 생각합니다. (특히 g(x)>0임을 이용하여 a를 구하는 부분) 다만 당시 10월 22번은 정답률이 약 3.9% 정도로 잡히는데, 굉장히 전형적이었던 다항함수 킬러 문항이었어서 오히려 이 30번이 더 어려웠다 생각했으나 정답률이 이쪽이 2배 이상 높게 나온 것을 보고 조금 신기했던 경험이 있습니다. 아무튼 해설은 이쯤에서 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
특히 조정식이.. 나라도 방송 나가면 저렇게 할 거 같은데 해석 어버버거리는 걸로...
-
https://xurl.es/4stnb
-
25수능 생2 12번 해설; 정석적인 풀이방향은 ㄱㄴㄷ대로...? 2
ㅅㅂ 이렇게 풀기를 원하면 시험시간은 50분으로 해줘야지 다시 풀어보니까 못해먹을거...
-
질문 받음 실제로 본 거임
-
누가봐도 스토리에 좋아요 누를 만한 내용은 아니였는데 디엠 한 번도 안해본 맞팔...
-
데쌍트 롯데리아 곤트란쉐리에 (노브랜드 버거->노브랜드 피자) 타코벨 (현...
-
최근 기출만 선별해서 풀거면 장영진t 기출봐도 될듯? 1
그냥 책 한권 pdf로 뿌리시네
-
국어: 수특 수완 검더텅 각 2회독 -> 1등급 영어: 수특 수완 EBS파이널...
-
장학 왜케 맛있음 ㄹㅇ 목시 컷 오를 거 같아서 그냥 노대 갈까 싶은데 어떰뇨?
-
기하나 미적 하는게 낫나요? 지금은 문과라… 수학을 이과쪽으로 하고 사탐을 해도...
-
1년동안 8명가르쳤습니다,, 시급이 일반 알바에 비해 많이높아서 좋긴한데 가르치는게...
-
내인생계획 7
군대에서행정고시준비하기 일초에피셋합격 상초에2차합격 병장때최종합격 법률저널 인터뷰:...
-
이미지 관리 시작
-
공수2-1 7
매일마다는 아니어도 조금씩이라도 올리겠음
-
오늘 배영하다가 앞에 여성분 가슴을 실수로 찔렀는데 (손날치기자세로 다섯 손가락...
-
https://xurl.es/4stnb
-
기원이 문제량 적다는 얘기가 있다하던데 상방 뚫기 용으로 강기원만한게 없나 반면...
-
말로 형용할수없을듯....
-
성인기념? 입학기념? 으로 지갑 팔찌 신발 가디건 목걸이 해서 740만원정도썼어욤...
-
수학뺴고다물어보셈
-
대학생분들 2
목표가 있나요?
-
오르비에 공유(?)해주실분
-
얘전에 봉사할때 정말 많아야 30정도? 눈으로 봤을땐 25정도 이지 않을까 하는...
-
ㅇㅈㅎㅈㅅㅇ 1
ㅇㅈ ㄱ
-
이러면 곧 키배터지나?
-
샤인미 N제 vs 한석원 4규 시즌2 기존 풀던 드릴/드릴드 끝나가서 풀어볼까...
-
26도 받으러 가야겠다 가서 국,수만 치고 나와서 점심먹어야지
-
근데그러면님들이싫어할거같애서
-
큰일이네 2
요즘너무늦게자는듯
-
아빠생일선물삿음 8
케이스도사고 삼케플까지들엇어 미역국도끓일거야
-
래브라도 리트리버 (?) 짱 귀여움
-
근데 금테를 달기에는 팔로워를 못 올리겠음 뻘글이나 써볼까요
-
이거 구라겟지 2
???
-
문과분들께 여쭤봐요 10
1. 혹시 고2때 사탐 몇과목 하셨나요 2. 과탐 진로선택과목도 하셨나요 3....
-
이쯤되니 의예과 더블링 어케 해결할 지가 궁금해짐 16
7년제? 유급은 진짜 전교 1-2등끼리의 싸움이라 비관 자살 나올 것 같음 26까지 받아버리면...
-
ㅇㅈ 0
메타열어줘
-
48명 남았네요
-
어느정도 안도함 실제로 그 덕에 비교적 편하게 본듯
-
어쩐지그댄내게말을안해요 허면그대꿈속으로날아가 살며시 얘기듣고올래요
-
https://orbi.kr/00026573385 낼부터 전단지 바로 만들어볼려고요
-
그랬었다구요
-
너 나이로 벌써 4수잖아 남자라서 군대도 가야되고 재수로 서강대까지 갔으면서 꼭 서울대를 가야겠니?
-
환급가능 대학에 올해 신입생으로 있는데 올해 수능보고 그냥 복학하면 환급 되나요?
-
어땠음...?
-
위험한 발언 10
발이 얼면 위험합니다 는 장난이고 개인적인 사견으로는 23 25수능처럼 남은 26...
-
하코다테 오릉곽 산책하려고 점 찍어뒀는데
-
그러면 역으로 반수로 딱 5.9개월치만하면 풀컨디션으로 수능장 입성 ㄱㄴ? 진짜 나...
-
ㄱㅂㅈㄱ 수학 오지게 파고 탐구 선택과목 정하기
동의합니다. 저도 현장에서 풀었을 때는 이게 22번보다 어렵다고 느껴졌던 거 같습니다. 그런데 막상 수능 끝나고 심심할 때 하나씩 풀어보니 쉽게 풀리는 문제들이 종종 있는 것도 같습니다ㅋㅋㅋ
저는 다음과 같이 풀었는데 주니매스 님 풀이를 보니 잘 푼 것 같아 다행이네요! 글 감사히 읽었습니다
(가) g(x)>0 <=> f(x)+f'(x)+1>1 <=> f(x)+f'(x)>0
적분식의 양변을 미분하면 g(3a+x)=g(3a-x)
<=> g(x)는 x=3a 대칭
<=> f(x)+f'(x)+1은 x=3a 대칭
(g(x)에서 f(x)+f'(x)+1이 합성된 ln(x)가 증가만 하거나 감소만 하는 함수이기 때문)
적분식 integrate g(t) dt from 2a to 3a+x = integrate g(t) dt from 3a-x to 2a+2 를 integrate g(t) dt from 2a to 3a + integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a + integrate g(t) dt from 3a to 2a+2로 바꾸면 앞서 g(x)가 x=3a 대칭임을 알았기 때문에 integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a 임을 알기 때문에 남은 식 integrate g(t) dt from 2a to 3a = integrate g(t) dt from 3a to 2a+2 에서 2a+2=2a or 2a+2=4a로부터 a=1 결정 (a=/0를 가정하고 풀었는데 a=0이라면 모순 발생)
(나) g(4)=ln5 <=> f(4)+f'(4)=4
얻은 조건들로부터 f(x)+f'(x)=(x-3)^2+3이고 f(x)=x^2-6x+12임을 알 수 있고 마지막 적분 식은 치환적분법에 의해
integrate ln(x^2-6x+13)*(2x-6) dx from 3 to 5 = integrate ln(t) dt from 4 to 8 이므로 적분값은 16ln2-4, 답은 12
감사합니다. 요즘 미적 30번은 여전히 식이 가진 의미를 파악하는 것이 중요하긴 하지만 그래도 과거에 비하면 계산량은 좀 줄어든 느낌이 드네용
동의합니다, '식이 가진 의미를 파악하는 것이 중요'하다는 말에서 2021학년도 고3 10월 미적분 29번도 떠오르네요! 그 삼각함수에 대해서 정적분 조건 제시했던 (제 기억이 맞다면)