문과탑 [1081224] · MS 2021 · 쪽지

2022-10-12 00:43:24
조회수 1,344

수2 연속 질문

게시글 주소: https://orbi.kr/00058753546


이 문제에서 g(x)가 x=-1에서 연속인지 아닌지만 확인해보면 되는 거 아닌가요?


그렇게 풀면 답이 ㄱㄴㄷ가 나오는데 틀렸다고 나와요

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 단 한 개의 깃털도 남기지 말고 · 1120753 · 22/10/12 00:45 · MS 2021

    g(-1)=0이어도 돼요

  • 단 한 개의 깃털도 남기지 말고 · 1120753 · 22/10/12 00:45 · MS 2021

    아니 g(-1)=0이어야 돼요

  • 조선의침술은세계제일 · 980854 · 22/10/12 00:45 · MS 2020

    ㄷ은 (-1,0) 안지나요

  • Serene_ · 1051936 · 22/10/12 00:45 · MS 2021

    ㄷ이 아니니까요~

  • 책참 · 1020565 · 22/10/12 02:10 · MS 2020

    함수 f(x)g(x)에 대해 보는 것이므로 g(x)가 x=-1에서 연속이라고 f(x)g(x)도 x=-1에서 연속인지는 알 수 없습니다. 함수의 연속의 정의에 따라 우극한, 좌극한, 함숫값을 f(x)g(x)에 대해 차분히 적어보시면 답이 ㄱ,ㄴ임을 알 수 있어요


    ㄱ. x->-1-, (-1)*0=0
    x->-1+, 1*0=0
    x=-1, 0*0=0
    0=0=0으로 좌극한, 우극한, 함숫값이 존재하고 세 값이 일치하므로 연속

    ㄴ. x->-1-, (-1)*0=0
    x->-1+, 1*0=0
    x=-1, 0*0=0
    0=0=0으로 좌극한, 우극한, 함숫값이 존재하고 세 값이 일치하므로 연속

    ㄷ. x->-1-, (-1)*(-2)=2
    x->-1+, 1*(-2)=-2
    x=-1, 0*(-2)=0
    2, -2, 0으로 좌극한, 우극한, 함숫값이 존재하지만 세 값이 모두 일치하진 않으므로 불연속

  • 책참 · 1020565 · 22/10/12 02:12 · MS 2020

    윗 댓글 분들이 모두 x=a에서 연속인 함수 f(x)와 x=a에서 좌극한, 우극한, 함숫값이 모두 존재하지만 불연속인 함수 g(x)에 대하여 함수 f(x)g(x)가 x=a에서 연속이려면 f(a)=0이어야한다는 '곱함수의 연속성'에 기반한 풀이를 말씀하신 것 같아서 저는 '함수의 연속'의 정의대로 접근하는 방식을 남겨둡니다!

    첨언하자면 '곱함수의 연속성'도 별 것은 아니고 결국 '함수의 연속'의 정의대로 증명해보시면 쉽게 확인하실 수 있을 거예요. '곱함수의 연속성'은 기출 문제에도 자주 등장했고 지금도 시험지에서 자주 볼 수 있는 상황이기 때문에 확실히 공부해두시는 것이 좋을 거예요! 다만 모든 연속 문제는 '함수의 연속'의 정의로부터 시작한다는 것도 알아두시면 좋을 것 같습니다.