[칼럼] 도형에 대한 기본적인 생각
게시글 주소: https://orbi.kr/00058390961
안녕하세요.
오늘은 수학 칼럼입니다. 주로 2~3등급 이하 학생 분들이 보셨으면 좋겠습니다.
상위권 분들은 도형에 약하시다면 가볍게 봐주세요..!
도형에 대해 떠오르는 것이 있어 간단하게만 정리해보려 합니다.
도형 문제는 어느 정도 풀이가 정해진 측면이 있습니다.
물론 수학을 잘 하시는 분은 워낙 많고, 간결한 풀이와 정말 기발한 풀이가 넘쳐 나지만
그럼에도 일반적인 관점에서 도형은 해야 할 것들이 고정되어 있는 편입니다.
다시 말해 2~3등급 분들이 지금 당장
수학 칼럼을 쓰시는 독존님이나 악어새님 등등..처럼 될 수는 없어도
저만큼은 하실 수 있을 겁니다.
전 문과거든요
도형 문제 학습에 있어서 가장 큰 애로 사항은,
"답지를 보면 알겠는데 어떻게 떠올려야 하지?"가 아닐까 싶습니다.
더군다나 답지를 본다고 실력이 확실히 느는 것도 아니고..
누군가 '이유'를 설명해줬으면 했습니다.
1. 삼각함수 값 하나를 준다면, 그건 모든 정보를 제시한 것이다.
제가 좀 헤매던 부분 중 하나입니다.
sin법칙과 cos법칙을 따로따로 물어보면
외접원 주니까 sin, 세 변 or 두 변과 끼인 각 주니까 cos
이런 식으로 쉽게 처리할 수 있었습니다. 이게 딱 쉬운 삼각함수 3점 문제겠죠.
그런데 조금만 어려워져도, 여기서는 sin, 저기서는 cos, 썼다가 안 썼다가 뭐 어쩌라는 건지 알 수가 없었습니다.
그런데 알면서도 활용하지 못했던 것이 있었다는 걸 어느 순간에 알게 되었죠.
하나의 삼각함수 값만 줘도, 적어도 삼각형 안에서는 모든 삼각함수 값을 다 준 것이나 다름 없습니다.
sin값을 줘도 cos값을 구할 수 있고, 그 반대도 마찬가지이죠.
그러니까
"sin값을 제시했지만 cos법칙을 활용하려면 값을 이리저리 바꿔야 한다!" 이게 아니고
애초부터 삼각함수 값은 다 주어져 있었다는 겁니다.
문제로 보겠습니다.
여기서는 sin BCD만 주었지만, 사실상 cos값도 같이 준 것이겠죠.
정말 당연한 이야기인데, 이걸 의도적으로 생각하고 풀면 안 보이던 게 보이기 시작합니다.
2. 보조선은 보조선을 긋기 위해 존재하는 것이 아니다.
이건 정말 중요한 이야기라고 생각합니다.
학생들을 가르치다 보면 '보조선을 긋는 것 자체'에 매달리는 경우가 많습니다.
하지만 보조선의 의미는 그런 데 있는 것이 아닙니다.
문제로 살펴보겠습니다.
이 문제의 마지막에서 저는 cos값을 찾으려고, 그리고 sin값을 찾으려고
그러니까 '직각삼각형을 만들기 위해' 보조선을 그었습니다.
2-1. 삼각형에서의 삼각함수 값을 활용할 생각도 해야 한다.
보조선과 연결되는 이야기인데
보통 sin, cos, tan의 정의 그대로를 기억하거나,
sin법칙, cos법칙 그 자체만 생각하는 경우가 많습니다.
그러나 우리가 중학교 때 배웠던 것처럼
삼각형에서의 삼각함수도 구할 줄 알아야 합니다.
피타고라스 정리와 연계되는 경우가 많죠.
위에 나온 문제에서도 마찬가지입니다.
3. 변형 공식은 암기해둘 필요가 있다.
sin법칙에서 나오는 공식이 았습니다.
저는 다음 세 가지 공식을 모두 외우고 있습니다.
cos법칙에서 나오는 공식이 있습니다.
저는 다음 두 가지 공식을 모두 외우고 있습니다.
워낙 문제를 많이 풀고,
또 수학 실력이 뛰어나서 안 외우고도 자유자재로 전환이 되는 사람은 모르겠지만
(사실 그런 사람도 머리 속에 이미 '외워져' 있는 거겠죠.)
일반적인 학생들은 "아니 누가 변형 공식을 무식하게 외움? 그냥 현장에서 식 변형하면 되지."
라는 생각을 많이 합니다.
그렇지만 이런 문제들이 나왔을 때 보자마자 풀이가 시작되려면
체화의 과정도 분명 필요할 겁니다.
삼차함수 비율 관계를 현장에서 증명하지 않는 것과 비슷한 맥락이라고 생각합니다.
특히 cos 공식 같은 경우, 저는 두 번째 공식을 훨씬 더 많이 쓰는 거 같네요.
솔직하게, '반드시' 암기해둘 필요가 있다고 말하고 싶습니다.
최상위권이 아닌 이상 머리 속에 넣어두지 않으면 바로 꺼내 쓰기는 어렵다고 생각합니다.
당연한 이야기이지만, 암기에 앞서 이해는 필수입니다.
4. '나만의 말'로 여러 가지 도구를 정립해두자.
많이 얘기했던 부분입니다.
'같은 cos값을 다른 삼각형에서 활용하기', '각을 넘기면 cos은 마이너스' 등
문제에 곧바로 써먹을 수 있도록
관련 개념을 나만의 말로 다듬어 놓는 것이 좋습니다.
5. 삼각형의 변과 각에 대한 명칭
이건 그렇게 중요한 건 아닌데
쉬운 문제에서 삼각형을 매번 그림으로 그려가며 푸는 학생들이 있어 간단하게만 넣겠습니다.
다들 배웠던 내용일 겁니다.
문제에서는 이런 식으로 활용될 수 있겠네요. 3번 파트에서도 똑같이 썼었죠.
더 생각나는 것도 있지만 기본적인 건 이 정도인 듯합니다.
읽어주셔서 감사합니다.
유익하게 보셨다면 좋아요 + 팔로우 부탁드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
드가자잇
-
나보다 잘하는 애들이 많은 집단에서 공부를 한다는 기대감 대치동 유명 강사들,...
-
너무 정공 마인든가 그래도 살면서 1번쯤 생각할만하지않나
-
여기저기 찾아보니까 크게 두 가지로 나뉘던데 1. 무단 조퇴도 출석 처리는 된다...
-
시대 라인업 0
국어 심찬우 손창빈 수학 최지욱 강기원 김성호 영어 정석현 생1 김연호 최원준 지1...
-
졸리당 4
오늘은 잠을 포옥 잘수잇겟어
-
중앙대 다군 0
중대 다군은 전화추합 추이가 보통 어떻게 되나요?
-
강의에사만 알 수 있는 문제플이 기술같은게 있나요? 정석으로 독학했는데 고민되네요..
-
국어 윤지환 서준혁 수학 박종민 최지욱 김범찬 시대 S반인데 국어에서 못들어본 분이...
-
바위 라이브러리 3
-
학원알바 끝 3
진작 끝났지만 개강해서 그런가 애들이 부쩍 늙어진 느낌.?
-
ㄹㅇ하나도안풀리네
-
아샷추 5
내 최애음료 히히
-
전에 8
왤케 눈물이 나지
-
2박 3일이긴 한데 끝나고 있으려나
-
엄청 우울해하네 3
나때문인듯
-
싫어하는건아님 2
진짜로.ㅇ.
-
온라인 오답 노트 어플 생김? 그거 만들려고 8기한테 종이 부엉이 부적 주면서...
-
돌이켜보면 0
좋은 말일수록 받아들이기 힘들었던거같다 진정으로 날 위한 말들이었는데 심지어 일부러...
-
일베부심같은 이상한게 생겨서 중학교때 어떤애가 1베충이라고 소문나서 약간...
-
아기사자 개강을 앞두고 ㅈ댐을 감지하고 와들와들 떨고있는중 8
낼부터 다시 수험생모드 on해야겠노... 군대전역하고 10월 17일부터 지금까지...
-
배성민 1
자러갑니다
-
차단안하면 나도정신병심해질것같아서함
-
새내기 되고싶다는 생각 30번 한 듯 즐기세요 여러분
-
뭐 이제는 뱃지가 생겼지만 올해 낙지 눈팅으로 원서 넣은 06입장에서 드는 생각임...
-
삼각함수 극한 도형 활용 풀고 있는데 겁나 ㅈㄹ맞게 생긴 도형 넓이나 쳐구해야 되는...
-
서울대 내부 여론은 어떤가요? 사진 보니까 서울대랑은 1도 관련 없어 보이는...
-
가즈아
-
구라인줄 알았는데 ㅅㅂ 진짜 하는거였네 듣다가 웃참하느라 힘들었음
-
소장 융털을 싹 제모해버리면 영양소 흡수율 떨어져서 살이 알아서 빠질텐데
-
수시 농어촌 << 이3끼들은 뭐임 이미 농어촌끼리 경쟁해서 내신따노코 농어촌전형으로...
-
탈의쇼 7
단 10초만에
-
왜이렇게됐는지나도모르겠음ㅋㅋㅋㅋㅋㅋ 옷장이 불편해서 그런가 외출할 때 옷 찾느라...
-
하루하니까 싱글벙글하긴 한데 ㅅㅂ 존나 힘들거같은데
-
쳐먹어도 그냥 멀쩡하네
-
ㅇㅇ
-
시대 9기들한테 이것저것 알려주고 싶음...
-
공부를하니까 마음이편안하네 퇴원했으니까 이제 진짜 열심히 공부해야지
-
17일후에 행복이 있었어야 했는데...
-
작수 아수라만 타고 봐서 그 전 커리 잘 모르는데 올오카도 문제 풀 때의...
-
대학은 가고싶고 2
공부는 하기싫고
-
전자기학 공부 중 튀어나온 라플라스 방정식인데, 이 형태를 외워야 하나요?
-
아니 정시 농어촌 국숭세단~건동홍이 이렇게 쉽나요? 7
물론 남과 비교하면 안되겠지만 현타가 ㅈㄴ 와서 며칠째 우울합니다. 저는 강원도쪽...
-
지금 숨기고 다니는 사람이 너무 많아서 다 셀수가없는데도 추산되는거만...
-
정법,윤사,경제<---------문제 보자마자 빤스런 동아시아사:역사 좀 안다...
-
한양 유기나노 0
가군 예비 4번이고 14명 뽑고 4차 2명 5차 2명 인데 될려나 1칸 2칸 3떨...
-
항상 나름대로 최선을 다한다고는 했는데... 애초에 잘못태어났던걸까
선 좋아요 후 감상
![](https://s3.orbi.kr/data/emoticons/oribi_animated/006.gif)
수학 허수에게 너무나 좋은.. 여러번 봐야지![](https://s3.orbi.kr/data/emoticons/2020_foolsday/oribi/006.gif)
존경합니다4번은 도형은 물론 수학할 때 되게 중요한 마인드인 것 같네요
작년 9평 14번 ㄱㄴㄷ 문제에서도 식만 보면 되게 거창해보이는데 그냥 ‘(p,f(p))를 원점으로 옮겨’ 라고 번역만 하면 문제의 난이도가 한결 수월해지는 것처럼요
작년 9평 22번 평균변화율 극한식에서도 그렇고 특히나 함수 문제나 도형문제에서 포장지 한겹 쌓인둣한 문제가 많아진 것 같아요
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
제가 국어 가르칠 때도 쓰는 말이고 영어에서도 씁니다.결국 자기가 얼마나 이해를 해두었느냐가 되게 중요한 거 같아요
다음에는 나만의 말 칼럼을 한 번..ㅎㅎ
좋은 칼럼 감사합니다! 근데 한 가지 실수가 있어서요 1번 내용에서 선분 BC 길이 구할 때 2sqrt21을 2sqrt2로 쓰셨어요
![](https://s3.orbi.kr/data/emoticons/rabong/018.png)
감사합니다. 수정했습니다!이건 제 개인적인 팁이면서도 하나의 기본기인데 삼각형 결정조건과 그에 따른 삼각형의 해법(삼각형의 모든 내각의 크기,변의 길이를 구하는 법)은 모두 암기해두는게 좋습니다. 이때 삼각형을 풀고 싶으면 복잡하게 사인법칙이나 코사인법칙을 활용하는 것 보단 적당히 수선의 발을 내리는 풀이가 간편한데 이건 본인이 직접 모든 케이스들을 그려보면서 어떻게 수선을 내려야 풀리는지 연구해봐야 합니다. 예를들어 변이 세개 주어지면 세 내각은 모두 코사인법칙으로 구할 수 있고, 내각이 두 개 주어진 경우 세 내각이 주어진 것과 동치이므로 아무 변이나 하나 알면 삼각형이 결정됩니다. 이때는 수선의 발을 적당히 내리면 삼각형이 무조건 풀립니다.(안 풀리면 보조선을 잘못 그은 것입니다.) 내각 하나,변 두 개인 경우 끼인각이면 코사인 법칙을, 끼인각이 아니면 수선의 발을 내려서 풀면 됩니다. 끼인각이 아닌 경우 원칙적으로 삼각형이 결정되지 않고 두 개의 케이스가 존재하지만 보통 도형문제에서는 그림이 주어지므로 그림 상에서 수선의 발을 내려보면 삼각형이 결정됩니다. (삼각형이 예각삼각형인지,둔각삼각형인지로 케이스가 갈리기 때문에 그렇습니다.)
맞아요. 이번 13번에서도 루트10 구하는거
코사인법칙으로 다들 풀었던데 수선만 내리면 특수각이라 1:1:루트2 눈으로 봐도 나오죠..
![](https://s3.orbi.kr/data/emoticons/oribi_animated/006.gif)
칼럼 써주세요 선생님..!사실 의외로 도형이 제일 발상적인 그런게 적은듯
시키는 대로만 슥슥하면.. 애들이 기하 하도 어려워해서 일부러 쉽게 내는걸수도 있긴한데
적분은 진짜 어려운 논술문제 같은거 보면 이걸 이렇게 치환해? 이런게 아직 잘 안보여요 ㅜㅜ
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
깨달으면 다른 고난도에 비해서 상대적으로 쉬운 편인 거 같긴 해요진짜 어려운 문제는 도저히 못 풀겠지만..