이해원의 경우의 수 무료 논리특강 [교재포함]
게시글 주소: https://orbi.kr/0005774269
1. 경우의 수를 논리적으로 제대로 공부할 수 있도록 강의한 50분짜리 강의입니다.
2. 교재파일도 첨부되어 있으니 다운받아서 공부하세요.
(강의와 교재 전부 무료공개입니다.)
3. 처음에 강의 화면 초점이 살짝 안맞는데 이해해주세요 촬영환경이 별로라서 ㅜ.ㅜ
설정에서 720p로 설정하면 화질 더 좋아져요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아................. ㅅㅂ 나도 현역으로 갔으면 23이구나
-
다들 굿모닝
-
고대 공대 0
669.09정도 나오는데 고려대학교 기계공학과 최초합 가능할까요?
-
ㄹㅇ
-
내내 1등이던 소수과 등수 밀림-> 칸수 9->8->7칸 떨어지는데 위에 표본이...
-
태국갔다왔음 4
아마 이렇게쓸듯
-
지금이라도 안정 2개 쓸까 하ㅋㅋ
-
원래 스케줄대로 한적이 업네
-
수시재수 계획이 없더라도 고등학교 출결은 끝까지 챙기시기 바랍니다.........
-
외로워서 그런가
-
메디컬에 지르고 전사하는 거 어떻게 생각함
-
반갑네요
-
제주도 ㅇㅂㄱ 2
-
뭔 공부를 걍 안 하는데 뭐 저런 거라도 하면 나아질까 저긴 죄 여자라 또 그렇고...
-
7급생 기상 0
7수생 아니고 7급생입니다
-
아이그냥
-
이탱뭉
-
7수생 기상 6
-
Ia형초얼버기 5
-
'더더더더법칙' '이게 이름이 유치해서 그래. 짝! 되게 우스운 표현 같지만, 이게...
-
좋은아침! 0
아침은 기분좋게 시작하자!!
-
뱃지 달았다 3
히히
-
100일 계획표 이거 30일부터 하라고 되어있는데 몇일씩 뒤로미뤄서 진행해도 됨?...
-
출근 1
내일은 주말
-
흠…………:…진짜 무섭군
-
아 내신 ㅅㅂ 2
등수 1개차이로 수학 2뜸 ㅋㅋ 학교에 수학황 ㅈㄴ 많네
-
컨설팅 3떨 글 10
왜 검색하면 안나와요? 구글에 감색하니까 오르비 글 몇개 보이던데 정작 오르비에...
-
재수할때 강남대성 가려고 하는데 정석준t와 홍준용t 고민됩니다 누구 추천하는지랑 이유좀..
-
한지 vs 세지 2
사문 +@ 하려는데 선택자분들 후기좀요 .. 한지는 아예 노베고 세지는 나라수도 +...
-
정시 원서카드 고민하는데 대학만 봤을때 어디가 더 괜찮음? 내 적성은 잘 모르겠음...
-
국어 영어 교재비가 조온나 아까움 다신 안 사 강민처 모고나 무제,새기분, 우기분...
-
어디갈까요? 건대자전가면 컴공 갈 생각입니다(지금은 중간공 다닙니다) 투표가 안올라가서 재업합니다
-
퀄 뭐가 젤 좋음? 이감오프랑 상상은 샀는데 바탕 한수 강K까지 사서 푸는건 에바겠지..?
-
향후20년 동안 달러 환율 900원되면 나라 떡상함? 1
독일 넘을 수 있음?
-
이 새끼도 만만치 않게 멍청하네요
-
ㅇㅂㄱ 0
ㅇㅂㄱ
-
버니즈 합류 8
후후흫
-
학교 어디가지 0
너무 고민되네
-
얼버기 2
학교가야한다
-
스포스포스포스포스포스포스포스포스포스포스포스포...
-
미치겟네
-
수학 6평 1에 9평 높2였는데 수능날에 운영 꼬여서 개망치고 3도 안뜰까봐...
-
기차지나간당 9
부지런행
-
한 명은 n수생이고 한 명은 대학생인채로 기다려달라 했을 때 흔쾌히 기다려줌??
-
나도 낄래 2
-
한참걸리네..
-
반도체는 반도체 취업 망했다 하고 기계 화공은 이미 망한학과라고 하고
-
잘자요 좋은 꿈 많이많이 꾸세요 행복한 하루 되세요
꺄 잘들을게요
네 열공하세요~!
항상 감사하지말입니다.
ㅋㅋㅋㅋ 군인인가요 ㅋㅋ
한완수 증명공부 하고 공대가면 수학할때 도움 많이 되나요???
계산력 자체로는 크게 도움이 되는데 공대공부를 위해 한완수를 효율이 떨어지죠..
1학년때는 다 같이 미적분학 듣지않나요??
미적분학들으면 미적분학책을 공부하면되지 그거때문에 한완수를 공부할 필요는 없는거죠
아물론 수험생때 한완수를 공부하면 나중에 도움이 된다는건 맞고요
네 수험생이라서 물은거에요 대학생이면 대학공부해야죠 ^^
아 ㅋㅋ 네 제가 잘못알아들었군요! 열공하세요 ㅎㅎ
아 한완수 수특 풀다가 생각했는데 모르면 답지볼까요??? 너무 많이 보는듯해서요
이제 인강으로 뛰어드시는건가요?? 멋지시네요
감사합니다ㅠㅠ 딱!!저한테필요한강의네요ㅜㅜ집가서들을게요!
사랑합니다
대박이다..!통계 어떻게 해야 할지 많이 고민했었눈데 정말 사랑합니다...!
잘 들을게 ㅋㅋㅋ
ㅋㅋㅋㅋ
해원님 매번 좋은 자료감사합니다.
저 뭐 하나 질문드릴게있는데.... 전 수리 논술준비해본적없고 심층면접준비만 해본적있는 의대목표하는 삼수생입니다.
논술아무것도모르는데 한완수에 제시하는대로 심특과정 충실히하면 되나요?
말투 개커엽 ^-^
쑤용도 ㅋㅋ
우와. 이런 좋은 강의 감사요.
감사합니다
롤선생이랑 똑같이생겼다.
벨트 루이비똥 인가요?
경우의 수 단원은 왜 그게 오답인가 알아내는게 더 중요한데... 그런 사고력 부분에 대한 언급이 좋군요...
마지막문제 보면서 그림을 중복해서 세는 실수를 피하는 다른 방법이 없을까 가만히 생각해보니 가로가 세줄 세로가 네줄 이므로 숫자 1,2,3 으로 네자리수를 만들되 저 세개의 숫자중 하나만 중복해서 두번 쓸수있게 만드는 가지수로 풀면 중복 시킬 숫자로 어떤수를 고르나 똑같으므로 3×4!/2!
잘듣겠습니다!
잘생겼네요 안경 벗은거 보니 라식하셨나여?
손가락 엄청 기네여....잘듣고 갑니당 비록 대학생이긴 하지만 이렇게 듣는 것도 재밌네요
겁나잘생기셨다..
내일 봐야지.. 알림용!
보물이다 ! 강의를 많이 안들어봐서그런가 이렇게 배우는건 처음이네요 !!
조합강의도....ㅎㅎ
음 태클은 아닌데요 ㅋㅋ 곱의 법칙이랑 수형도를 연결 지어서 설명하실 때 말씀하시는 "수형도의 뒤가 같을 때 곱의 법칙을 쓸 수 있다"라는 말은 엄밀하게 말하자면 틀린 말이에요. 수형도의 뒤가 항상 똑같을 수가 없죠. 첫번째 문제에서는 같은 길을 지나가기 때문에 우연히 수형도의 뒤가 같을 뿐이지, 두번째 문제에서부터는 수형도의 뒤는 다르지요. "수형도의 가짓수가 같을 것이라고 예측되기 때문에 곱의 법칙을 쓸 수 있다"라고 말해야 정확한 거 같아요.
저두 이렇게 생각해요