칼럼)미분방정식을 이용해서 함수를 쉽게 구해보자.
게시글 주소: https://orbi.kr/00056643608
맨날 여기서 공대오지마라 의치한가라같은 뻘글하고 떡밥글만
쓴 사람이지만 이번에는 그래도 지금까지 내가 썼던 글 중에서
어쩌면 가장 유용한 글을 써보고자 합니다.
우선 이 글을 쓰기 전에 미분방정식 관련 좋은 칼럼이 있어서
링크 첨부합니다.
지금 쓰는 칼럼같은 경우
내용이 매우 어려울 수 있으므로 깊은 이해보다는 이런게 있다라는 수단의
수준으로만 설명하고자 합니다. 또한 이 방법은 최후의 수단이며
고등 교과 수준으로 풀어내는 것이 가장 중요합니다.
아래와 같은 미분방정식이 있습니다. 이는 연세대학교 미래캠퍼스
2022년 논술문제에서 따왔습니다.
이것을 한번 풀어보죠.
이렇게 정리하고 양변 동시에 적분한다면
이라는 결과가 나오네요. 그리고 f(0)=1/2라는 경계조건이 있으므로 C=1/2이네요.
이 되네요.
근데 이거 갑자기 못떠오를 수도 있잖아요? 그럴때는 어떻게 풀어야 할까요?
그럴 경우에 도움이 되는 방법이 있습니다.
우선 이 방정식을 봅시다.
이 방정식 푸는 법은 다들 아실 겁니다. 저 링크를 타도 푸는 방법이 나옵니다만 알려드리자면
와 같이 정리될 것이고 여기서 양변을 적분해 줍시다. 적분상수에 유의합시다. 매우 중요합니다.
와 같이 정리가 되네요. e의 C제곱을 간단하게 A라고 나타냈습니다.
일단 주어진 방정식을 풀기 위한 첫 번째 과정이 끝났습니다.
그런데 이거 구해서 뭣에다가 써먹냐고요?
나중에 다시 설명해 드리겠으니 계속 따라와 주시면 되겠습니다.
이젠 아래 방정식을 다시 한 번 살펴봅시다.
여기서 f(x)가 삼각함수와 지수함수의 곱의 꼴로 이루어져 있어야
대입하고 정리해볼 때 우변처럼 나올 수 있다는 생각을 한번 해봅시다.
이것을 미정계수법이라고 하는데 사실 엄밀하다기 보다는 매우 직관적인 방법입니다.
위의 말을 간단하게 수식으로 표현해 보았습니다.
이제는 이 f(x)를 직접 대입해서 항등식을 세워 봅시다.
이런 항등식이 나오게 된다는 것을 직접 대입함으로써 확인할 수 있습니다.
여기서 이젠 a와 b의 값을 구하게 된다면 각각 1, 0이 나올 것입니다.
그러면 이젠 f(x)가 나오겠죠.
f(x)를 구했더니 저런 꼴이 나오네요. 저걸 다시 방정식에다가 대입해 봤을때 좌변과 우변이 서로
같아질 것입니다.
그렇다면 우리는 이 방정식을 풀었다고 할 수 있을까요?
답은 그렇지 않습니다. 왜냐하면 이렇게 구한 저 f(x)가 저 방정식의 유일한 해라고 단정할 수가 없기 때문입니다.
그러면 우리는 저 방정식의 해를 어떻게 표현해야 할까요?
맨 처음에 풀었던 방정식이 이에 대해서 놀라운 정답을 제공합니다.
이 방정식을 다시 한번 보시죠. 주어진 미분방정식에다가 대입해 봅시다. 그러면 좌변이 0이 될 것입니다.
그렇기에 Ae^x라는 항은 추가를 하더라도 방정식의 결과에 아무런 영향을 주지 않겠네요. 이러한 것을 우리는
'일반해' 라고 하기로 하였습니다.
그러면 f(x)를 이렇게 표현해도 방정식을 만족하겠네요.
이 f(x)가 위 방정식의 최종 해가 되는 것입니다.
그러면 이제는 상수 A를 구할 차례입니다. 이 문제에서는 f(0)=1/2라는 조건이 있었네요.
이를 대입 시 A=1/2가 될 것입니다.
하지만 이러한 방법에는 한계점이 존재합니다.
이렇게 f'(x)나 f(x)에 제곱같은 것이 붙어있을 때에는 쓸 수가 없고
처럼 상수계수가 붙어있는 경우에만 사용할 수 있다는 것입니다.
마지막으로 이 방법은 최후의 방법이기에 당연히 고교 수준으로 푸는 것이 가장 중요하다는 말을
끝으로 떠납니다.
맺는말) 공대오지마라 의치한가라
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생각보다 오르비에 언급량이 적어서...
-
야옹 3
냥~~
-
생윤하다가 개화나서 작년에 찍먹 했던 동사로 돌아가려는데 어떨까여..역사 제대로...
-
국어 지문은 27
복잡하고 정보량이 많은 거보다 단순한데 생각을 요하는 게 훨씬 나음요. 제가...
-
. . . 7
하버드대학교 맘스터치 학과 26학번 오로라
-
안녕히주무세요 8
오늘은 7시에 일어날래요
-
몇인가요
-
와 젖탱이봐라 침고이네 17
하 진짜 ㅈㄴ 피곤하네 다들 오늘 하루 고생하셨어요
-
강하영 29번 풀이법 이거 왜 작년 평가원부터 안 먹힘? 제가 작수 참전 안 해서...
-
나도씨발그냥확통할걸 왜깝쳤지 아씨발진짜
-
저능해지는거같은데 기분탓임?
-
수열시러 2511의 전문항 풀이가 궁금하다면 https://orbi.kr/00072290349
-
제가 모의고사 풀 때 문학이랑 화작에 65분 정도 쓰는데 화작,문학 합해서 3-4개...
-
머임 현우진 12
올해 킬캠 해강으로 첨 듣는데 상당히 빠져드네..
-
최저용으로 수학 할 생각없었는데 어쩌다 보니 하게됬습니다 3등급이 목표입니다...
-
이 개 지리는 가성비를 이해 못한단 말인가 아쉽구나
-
더프 다들 화이팅입니다 오노추 너에게 - 성시경
-
결국은 물을 많이 부어봐야 알 수 있음 생각보다 공부하는거에 비해서 항아리에 물이...
-
알림창이랑 설정창 왔다갔다하기 개빡셈
-
그러니 목동러들은 눈물을 그치도록
-
없으려나 연세대같은곳은 거의 만점이던데
-
3합6 최저를 맞추려면 국어, 수학 둘 중 하나를 4등급 맞아야 하는데 머가 더...
-
어이가 없네 2
어삼은 있네
-
목동도 쫌 와봐라ㅠ
-
개재밌다 ㄹㅇ
-
후기좀
-
엠스킬 0
불후의 개념 완강 햇는데 기출이랑 병행 하는게 좋나요 엠스킬 먼저 하는게 좋나요
-
정시 수시 고민 0
외곤데 수시로 3.극초 나와서 설대 종교학과 쓸거 같은데 설대 자전이 너무 가고...
-
기하인강 둘 중에서 하나 들으려는데 뭐가 더 괜찮나요
-
요즘 현우진이랑 옛날 현우진 너무 다르네 ..ㅋㅋ 요즘엔 그냥 로봇같은데 옛날엔...
-
재미도 없는데 깨작깨작 할말은 다하고 수업도 졸라 느긋하게 나가다가 오버하는건 좀...
-
감귤 먹는 시골쥐의 우당탕탕 육지 여행기 1(부산) 28
***사진 많아요. 데이터 & 스압 주의*** 다음편...
-
26학년도 6평대비 사피엔스 모의고사 풀이(해설용) 11
30분 재서 시험본 건 따로 있는데 그건 부끄러워서 못 올릴 듯.. 문제시 삭제
-
3678x, 90543, 28176 선착순 1명 천덕
-
외가가 외할아버지랑 외할머니 두 분 다 전라도 분이셔서 전라도 사투리랑 서울말...
-
개념적고 마더텅 수특딸깍으로2등급가능한사탐뭐있어요?
-
만약 못풀었다면 1 3 5중에 하나 찍으셈 근데 27번이랑 번호 안겹치게+ 하나도...
-
7모 전까지 한바퀴 겨우 돌릴 수 있을 듯 막상 공부하면 재밌긴 함
-
AI에게 먹일 샘플 o4-mini 10초만에 다읽고 45개중에 제대로 읽은 OMR...
-
브레턴이 마지막 경제지문이라는데 킬러이슈 때문임?
-
꼭 수능에 나와서 통수치는듯..? 혹은 무조건 나온다 하는 게 안나오거나 예상을...
-
아니 나 제주도 사투리랑 경상도 전라도 사투리랑 섞였나봐 10
어카디 근디 시방 너무 배고픈디 뭐먹을까
-
왜 다 이과야 9
그러고보니 여긴 왜 다 이과야 왜 다 공돌이나 의돌이임 왜 문돌이 사대지망은 없는거임...?
-
화학 0
4덮 5모에 냈으면 1컷 38-39나왓을듯 진심으로
-
대학가면 롤 많이함? 11
어때요? 아직도 인기많나
-
특히 국어가 궁금합니다
-
물2 바이럴 14
하고다님 5모 표점 보라고 근데 수요는 없음
-
13354 5687x 43521 find x
-
하이호 드북 1
"하이호" 처음 만나서 반갑다는 인사이다. 하이호 하이호 하이호 하이호 하이호!...
-
맞음
아 뭐야 비켜 !

미분방정식 관련 글 예전에 누가 올리셨는데링크보시면됩니다.

감사합니다엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요!
즐거운 함수방정식의 세계로 떠나요
요약)dy/dx를 분수 취급하면 정신건강에 이롭다
수포자라서 모르겟다..
의치한 가지마라 무조건 스카이 가라
이 글을 보고 미적분으로 선택했습니다.
이 글을 보고 확통을 선택했습니다
1/y 적분하면 ln|y| 아닌가요?
절댓값
그러네여 ㅎㅎ 죄송합니다
TMI)
고등과정에선 절댓값을 붙이지만....
복소해석학의 관점에서 계산을 하면 상관없습니다.
약간의 오일러 공식과 함께 계산을 곁들이면
고등과정에서의 case를 나눈 결과과 같아집니다.
대략) y=Ae^x에서 A가 양수뿐만 아닌 실수인 이유라고 생각하시면 됩니다.

ptsd...ㅋㅋㅋㅋㅋ 잊고살았던 공수의 기억
공학수학의 향기가 느껴지는 글이네요
미방 에쁠받아서 좋았는데 이제 다른데 가면 날아갈성적 ㅅ;
대학입시에서 이런 스킬들은 잡스킬. 딱 그정도.