수1 ep1. 왜 라디안을 쓸까? (노베용)
게시글 주소: https://orbi.kr/00056469571
수1 ep1. 왜 라디안을 쓸까.pdf
안녕하세요. 파급효과입니다.
어느덧 2022년도 1/3이 훅 지나가고 6평이 1달 남았네요.
이전에도 공지한 것처럼
누구에게나 수능 수학 학습에 도움이 되고자 하는 정신을 되살리고자
제가 예전에 썼던 칼럼을 리뉴얼하기로 했고 오늘이 그 첫날입니다.
반응이 예전만 할지는 모르겠으나 그래도 올려보려고 합니다 ㅎㅎ
기파급을 이미 이용하고 계신다면 기파급에 있는 내용이니
따로 기다리실 필요없을 듯 합니다.
대부분 맛보기에도 충분히 나와 있는 내용이니
아래를 참고하셔서 미리 공부하셔도 될 듯 합니다.
Standard 맛보기: https://orbi.kr/00055218608/
Extension 맛보기: https://orbi.kr/00055347054/
오늘 소개할 내용은 '왜 라디안을 쓸까?'에 관한 것입니다.
개념적인 파트이고 노베용이라 가볍게 보시면 될 것 같습니다 ㅎㅎ
본문부터는 원활한 전개를 위해 편하게 말을 놓겠습니다.
시작하겠습니다.
___________________________________________
이번 교육과정에서는 저번 교육과정과 달리
이과뿐만 아니라 문과도 삼각함수에 대해 배운다.
삼각함수, 호도법(라디안)을 처음 배우는 학생들은
'라디안을 대체 왜 쓰는가?'
에 대한 질문을 한다.
왜냐면 초등학교 때부터 지금까지 멀쩡히
60도, 30도 등등 '도' 단위를 잘 써왔기 때문이다.
또한 라디안으로 인해 흔히들 아래와 같이
생각하며 혼란스러워 한다.
처음에 라디안에 익숙해지기 위해
를 무작정 외울 것이다.
하지만 우리는 pi를 처음 보는건 아니다.
초등학교 때 원둘레, 원의 넓이를 하며 접했을 것이다.
이때 아는 pi는 다음과 같다.
여기서 많이들 의문이 드는 옯붕이들이 있을 것이다.
"그러면.....
인 것입니까? 아니면 삼각함수에서 쓰이는 pi랑
초등학교 때 배운 무리수 pi랑 다른건가?"
결론부터 말하면
이 맞고
인 것이다.
정리하면
이라는 것이다.
위 의문은 해결되었는가?
이제 '왜 라디안을 쓰는지 썰을 풀어보겠다.'
2000년 전 고대 이집트로 가보자. 피자의 둘레를 재는 상황이다.
둘레를 대략적으로 어케 편하게 잴까?
이때 180등분 되어 있는 각도기가 있었겠는가?
당연히 없다. 이 시대 기술로 어케 정확하게 만들겠는가
피자의 반지름 길이의 밧줄로
둘레를 대략적으로 재보는 건 어떨까?
이런식으로 말이다.
이때 중심각을 '1'이라고 해보는건 어떨까?
호의 길이가 반지름 길이의 '1배'이니까 직관적으로 와닿는다.
이런식으로 하면 중심각이 'theta(세타)'이니
위 그림의 호의 길이는 r의 'theta(세타)배'로 쉽게 표현할 수 있다.
그렇다.
이건 원의 둘레를 표현하는 '라디안식 공식'이 아니다.
라디안이 이런식으로 '정의'된 것이다.
'1 라디안'은
편하게 '호의 길이=반지름 길이'가 될 때의
중심각의 크기라고 보면 된다. 이걸 편하게 단위로 설정한거다.
오히려 '라디안' 시스템이 '도' 시스템보다 직관적이지 않은가?
원 둘레는 알다시피 이다.
우리는 "원의 둘레는 원의 반지름의 '2pi배'구나!"
라고 볼 수 있다.
이래서 우리가 편의에 의해
이렇게 외우고 다니는 것이다.
재밌었는가? 고맙다 사실 이해시키려고 지어낸 이야기다.
고대 이집트에 피자라니 말이 되는가 ㅋㅋㅋㅋㅋ
그래도 수학적으로 라디안이 저렇게 정의되는건 맞다!
호도법을 쓰면 원 둘레 표현하기 넘 좋으니 미워하지말고 애용하자.
이상이다. 호도법을 아예 처음 배우는 학생에게 도움이 되었음 한다.
세 줄 요약
1.
2. 좋아요
3. 팔로우
0 XDK (+1,100)
-
1,000
-
100
-
스블 미적 완강하면 n제 그만풀고 실모 들어갈건데 지금 생각중인건 강k 서바중에...
-
라면 부셔먹기 7
일주일을 달린 저에게 주는 보상임
-
여사친이… 있어? # 있어야 좋아하지 # 있어야 만나지
-
10시까지 끝내고 나왔는데 뭔 10시까지 남아있는 사람이 7명도 안되는듯
-
근대 원래 인증하고 시간 지나면 내리는게 국룰이에요? 10
전 상관업는데 신기하군뇨.. 아싸라 그런가
-
민지야~ 6
-
사랑평화우정 3
이걸로 닉네임 바꿀까
-
여자들만 행복해!!!
-
대체 어느정도까지 심해야..
-
웨 몷라?
-
수특 한권이 전부임 놀랍게도
-
큐브상담에소 공통하고 미적 하라고하셔서 그러고있는데 미적 안하니까 불안해요
-
1에서 10까지
-
유튜브에도 있네 ㅋㅋㅋㅋㅋ 이때 나몰라패밀리 감성 지금 보니까 못 견디겠노 ㅋㅋㅋ
-
내가 미각이 마비된건 아닐텐데 너무 심했다...
-
영어기출필수론 28
영어는 기출만 보면 된다고 생각함 교육청도 필요없음 평가원만 7개년 기출만 계속...
-
공간벡터는 살짝 머리아프네 벡터 자체가 아직 어색해서 그런가
-
다음닉추천받음 16
생각해본거 저능강해린 1.0 지망생 1.0 강해린 08
-
실력은 오르는데 0
속도가 떨어지는중ㅋㅋ 공부란 어렵구나..
-
출기 출기능수 예전 네임드
-
막 이런거 수2 생기부에 넣어도 되나 그리고 넣을수 있나..?(야한거아님)
-
국어 정확히는 기출만 보면 안되고 기출 마르고닳도록 보는건 효과가 적다 반복은...
-
가형 킬러 21번 30번 이런건 아예 걸러도됨
-
내가그럼..
-
다른 사람 같음
-
모두들 비켜라 크아악
-
아니국민연금생각하면딱히부럽지가않아
-
미적분 상담 7
1까지는 솔직히 절대 쉽지 않아서 현실적으로 수능까지 미적 2까지 열심히 해보는게...
-
지갑 안 갖고 나와서 어쩌지 하고 있었는데... 나 05년생 새내긴데...
-
3모 이거 ㄹㅇ임? 10
사실 제가 예상해본거임 생윤 120019명 사문 148762명 물1 34028명...
-
난뭐가좋은문제인지모름 안목이없음
-
저나이때로돌아가면상산고정문개박살내고홍성대전이사장님악수쌉가능인데
-
아이고 아이고
-
흐음 집에서 라면 끓여먹는게 나았으려나
-
도플러 효과는 파원의 속력이 파동의 속력보다 작을 때만 발생하는 물리적 현상입니다....
-
수시충인데 메디컬에 미련을 못버리겠네요.. 솔직히 작수 치고 더해도 안되겠다...
-
기만중에서 5
노베기만이 제일 긁혀요 아 오르비 노베 수준 더럽네 높네
-
올해는 4규s1 vs 빅포텐s1 뭐가 더 어렵나요? 0
작년엔 4규가 더 어려웠다는 말이 많던데 올해는 어떤가요? 그냥 비슷비슷한감
-
자전거타기 6
오랜만에 탔더니 힘들어서 포카리 500ml 순삭
-
그게 내 운명인 거시다...
-
국수(탐) 중에 추천 부탁드립니당
-
다음주부터 빡공할거야!
-
노베라서 울었어요... 풀이도 저능아 풀이라서 양해부탁드려요...
-
공부 의지 약하면 잠깐이라도 잇올 다니는 게 나을까요? 2
너무 비싸서 못 다니고 있는데 2~3달 정도라도 짧게 다녀볼까 고민 중인데 괜찮을까요?
-
절대 한끼에 다 못 먹는데
-
좀 많이 썻네
-
진짜 어쩔거임요
-
댓 개수로 증명해드림
처음에 라디안 배울 때 약간 엥하고 어차피 문제되는 게 아니라 넘어갔는데 이제 이해했네요
ㅎㅎ 그게 목적이었는데 좋네요. 사실 문제 푸는데에는 전혀 지장이 없지만 이해하면 편안한 느낌이죠 ㅎㅎ
옛날에 실시간 검색어 생각나네요 ㅋㅋ

아 ㅋㅋ 2년도 넘었네요. 아마 그때 그걸로 처음 작성했던 칼럼일거예요 ㅋㅋㅋ고등학교때 샘이 부채꼴의 호의 길이가 반지름의 k배 일 때, 그 중심각의 크기를 k라디안 이라고 정의한다고 설명하시고 호의 길이를 이용한 각의 정의라서 "호"도법 이라고 설명하셔서 한 방에 이해가 갔던 기억이 있네요 ㅎ

깔끔하네요
허거덩다구리 이제막 삼각햄수 배우는데 킹급효과!!마지막 gif 잘 만드셨네요ㄷㄷ
알아도 쓸모없지만 1rad는 57.XXX°정도래요
라디안으로 해야 무차원수로 계산 편해지고 lim x->0 일때 sinx/x=1 이게 성립함