기하 칼럼) 쓸데없는 접선 공식들
게시글 주소: https://orbi.kr/00056380719
칼럼 쓸 재료 다 떨어졌으니 언팔바랍니다.
원점을 중심으로 하는 이차 곡선들에 대해 특이한 성질이 있습니다.
우선 원점 O가 아닌 점 P가 이차 곡선 위에 있다고 가정하고 직선 OP의 기울기를 k라고 하겠습니다.
그리고 점 P 위에서의 접선의 기울기를 m이라고 하죠
설명드렸듯 파란색 직선의 기울기는 m, 빨간색 직선의 기울기는 k입니다.
이정도로 5개의 공식이 있겠네요
사실상 포물선은 포물선 공식끼리 비슷하고 타원과 쌍곡선도 거의 공식이 비슷하니 외우기 어렵진 않습니다
Q. 엄청 쓰잘데기 없어 보이는데 대체 어따 쓰라고 있는 공식인가요?
A. 그냥 만든 거고 쓰잘데기 없는 거 맞습니다.
언젠가 쓰이겠죠 뭐
0 XDK (+1,000)
-
1,000
-
ㄹㅇ 야무진데 월화수 학원일 수요일은 좀 일찍 끝남 수성구에서 그대로 밥 먹고 과외...
-
건양대 의대에 가고 싶은데 건양의처럼 백분위 의대고 미기 가산점이 없는 대학만...
-
전역 후 수능 준비하는 n수생 입니다 집 앞 러셀학원에서 6모 접수를 했는데 따로...
-
2028학년도 동국대 모집단위별 전공 관련 교과 영역 0
2028학년도 동국대 모집단위별 전공 관련 교.. : 네이버블로그
-
국어에서 숨은 그림 찾기 같은 문제는 어떻게 처리해야 할까요? 3
독서도 그렇고 문학도 그렇고, 가끔 진짜 눈썰미가 좋거나 기억력이 ㅈㄴ좋은 사람들만...
-
외모 check 7
역시못생겼군
-
[속보] 美 자동차·주요부품 25% 관세 정식 발효 0
[속보] 美 자동차·주요부품 25% 관세 정식 발효 당신의 제보가 뉴스로...
-
귀엽다
-
놀아줘요 2
-
계엄하고 며칠뒤에 약간 사놨는데 달달하네 좀 더 살껄 ㅜ
-
근데 오르비언이 아니라 오리엿음 랩틸리언같은거임 오리비언인거지 근데 동시에...
-
아오 원래 고1부터 교육과정 바뀌니까 과외할생각 없었는데 왜 고3n수생들은 아무도...
-
통수칠 준비중인 아재인데 통합 수능 준비 할라면 그냥 시중 통합 사회 통합 과학...
-
재수생 6모 2
4월 10일 까지 모교 가서 신청하면 되는 거죠? 일찍 가면 좋고 그런거 없겠죠?
-
복귀중 0
으악
-
ㅈㄱㄴ
-
평가원 #~#
-
드과자
-
N제 해설강의는 1
다 보나요? 틀린것만 보나요?
-
“재수 1년 박아서 실패했는데 반수로 되겠냐“ → 4개월만에 반수 성공 “솔직히...
-
나 등장 6
밥줘
-
사탐 공부법 0
6모 1등급 목표면 6모 전까지 개념,기출,심화개념..어디까지 나가야할까요 사탐은...
-
제가 아침에 일찍 일어나서 공부해도 걍 잠이 솔솔 오길래 요즘은 8시에 기상해서...
-
캬 인정하면 개추
-
고2때까지 잘 하다가(내신은 잘 나옴 근데 갓반고라 쓸 데는 없음) 고3때 놀아서...
-
갑 도가 을도 도가인줄.. (순자래) 최근 생윤에서 도가가 유교인척 하는경우가...
-
[속보] 플라이츠 "트럼프, 尹 공감하고 이야기하길 원해" 1
[파이낸셜뉴스] 도널드 트럼프 미국 대통령 측근 프레드 플라이츠...
-
흑
-
박원순 김수현 나오는 릴스에 하트박아서 리포스트눌려있었네 미친
-
강릉에서 '5000억원어치' 마약이…'美 FBI' 첩보로 적발 1
국내 정박한 외국 선박에서 밀수로 의심되는 역대 최대 규모의 마약이 적발됐다....
-
정~말 피곤해 3
-
희영이가 오지 0
오케 사랑이란 폴린 오케 사랑이란 폴린 100에 400을 뚝 때 난 떨어지고 싶어
-
무잔이다!! 2
녀석은 목을 베어도 죽지 않아!!
-
토마토스파게티 만드는중 10
양파 많이넣었는데 약간 부자같아요?
-
만백?이 중요하니까 생윤사문하는게 국룰인가요.. 생윤 대신 괜찮은 과목 있으면 추천해주세요
-
라고 하지말고 찡찡대지말고 주어진것에 항상 감사하면서 좋은 환경에서 공부할 수있는거...
-
화스퍼거들 우글우글한데 원래 생2가 표점깡패아닌가
-
자주 들음... 근데 실제로는 싸가지 잇어
-
교재비는 얼마정도 나오나요?
-
맛점해라 게이들 10
아 질질 쌀 거 같아❤️
-
뒤지게 힘드네 요리하는 사람들 진짜 대단하네요
-
점메추 10
기타 추천은 댓글에 달아주세영
-
햇살 ㅈㄴ좋다 1
아침엔 좀 추운것 같다만 밥먹고 담배피면서 광합성 하니까 힐링이 따로없네
-
냐고!
-
이시기에 플만한 실모 있음? 그냥 기출 복습하는게 맞나
-
간계밥을 너무 짜게 만들었어요 요리 잘하시는분 있나요 제가 고용할게요 요섹르비언...
-
지면 수비❤️
IMI !! IMI !! IMI !! IMI !!
마지막이니 기념 7ㅐ추
신기하네 ㄹㅇ 이차함수 접선은 쉬3풀때 유용할듯
타원에서 빨간 직선은 기울기가 m인 타원의 현의 중점의 자취로, 파란 직선과 켤레 직경의 관계를 가집니다. 일반적으로 모든 이차곡선에 대해서 기울기가 일정한 현의 중점의 자취는 직선이에요.
타원 위의 점 P에 대하여 두 켤레 직경의 길이의 절반을 p, q라고 합시다. 두 켤레 직경과 평행하며 점 P를 지나는 두 직선을 그어 켤레 직경과의 교점을 각각 A, B라 하고 AP = a, BP = b라 하면 일반적으로 a^{2} / p^{2} + b^{2} / q^{2} = 1이 성립합니다. 타원에서 장축과 단축은 켤레 직경(Conjugate Diameter)의 특수한 경우이므로, 이 경우 p = 장축 길이의 절반, q = 단축 길이의 절반이 되어 타원의 정의식이 됩니다.
즉 켤레 직경에 대해서는 마치 "그 켤레 직경에 대한 기울어진 좌표계"에서 타원의 정의식이 동일한 형태로 적용된다는거에요.
이것 말고도 켤레 직경은 중요한 성질들에서 많이 등장하는데, 이 모든 내용이 무려 2200년도 넘는 과거에 쓰인 아폴로니우스의 "Conic Sections"에 나오는걸 생각하면 정말 대단하긴 합니다. 카르테시안 좌표계도 없던 시절에..