기하 칼럼) 삼각형 속 선분 비율 빠르게 찾기
게시글 주소: https://orbi.kr/00056295417
참고로 저는 기하 칼럼 많이 쓸 생각은 없으니 팔로우 안해도 됩니다
부담 주지 마세요
그림과 같은 경우에서
글로 써보면 외우기 어려워 보이지만 실제로 체크해보면 매우 쉬운 공식입니다.
보통 저런 경우가 안 나와서 실전성이 없지 않냐고 할 수는 있는데, 저 공식을 적용할 수 있는 더 쉬운 경우가 있습니다.
이 경우에
이 그림 형태는 자주 나오는 편입니다.
올해 수특에 있는 문제입니다. 공식을 사용하면
에서
이므로 답은 1:4 비율에서 3번입니다.
다른 문제입니다.
이런 경우 보조선을 그어주면 편합니다.
이렇게 한 후
이므로 OA의 길이는 AM의 2배입니다.
에서 CE:EB는 3:2입니다. 답은 4번입니다.
0 XDK (+100)
-
100
-
비호감도는 없나 5
-
챗지피티 이새끼는 왜 날 자꾸 미취학아동으로 만드는거임? 6
ㅅㅂ 재미들림
-
저도 호감도 써드림 53
1~100
-
아 토할거같아 2
씨발
-
선넘는 조언도 환영이오 어떻게 시발비갤보다 점수가 낮소
-
언젠간 오르비의 글을 바탕으로 블로그를 써야지 하고 생각은 하고 있다만 2
내 국어사 블로그는 영원히 쓰일 리 없을 듯 이놈의 귀차니즘
-
졸업앨범보면 되긴 하지만 그래도 한번만 못봤네요
-
히유ㅠㅠ
-
ㅇㅈ 5
머리 예쁘징//
-
이매진 매월승리 간쓸개 이감모고 다 하는거 개오바인거 같긴한데... 이감 안하면...
-
수능 때 생윤치는 애들 이겨야하는데.. 부족할까요 근데 원래도 자이 하나 풀고 수특...
-
아랍상 두부상 7
대충 눈코입 뽝!이면 아랍상임? 무쌍에 순하게 생기면 두부상인가
-
치킨 시켜서 맥주 까는 낙으로 일주일 버팀 행복해서 눈물날것같다. 오직 순간을...
-
.
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
https://orbi.kr/00062221739 링크에 들어가기만 해도 노트북이...
-
아랍녀 두부(외상x)남 커플 뭐가 더 많음?
-
그냥 저 시험 잘밨어영 뽀뽀해주세영 하면 될 거 같은데 저능아니 뭐니 이런 어휘로...
-
호감도 받는 메타는 없나요 아 이건 받는 사람만 오케이면 되는구나
-
두명아 빨리 좀 나가주지 인스타 스토리용인데 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
의대는 확실히 일반고가 더 나은거 같고 공대는 수시로 동실력이라고 가정했을때 어디가 더 유리함?
-
‘대수적 수’(algebraic number)란, 모든 항의 계수가 정수인 다항식의...
-
뉴비도 오세요
-
점수 몇점에서 몇점까지 진동하셨나요 가장 최근에 푼 실모인 히카 22회...
-
수원인데 오실 4
여기 좋음
-
호감도… 28
는 너무 잔인하니까 내적친밀감 ㄱㄱ 상처받지마요
-
둘다 내취향으로 생겼는데 이미 둘이 맨날 밥먹고 술먹음 에휴다
-
나랑 만나서 머함;
-
이게뭐노
-
최근의 먹부림2 1
는 사진찍은게 별로 없넹
-
현역 고3 문과생입니다.. 올해 3모 확통 69점으로 3등급 나왔고, 공통은...
-
옯만추 할 사람 10
나는 삘 오면 진짜 가
-
24수능 설대식 394.6이였는데 이정도면 실기에서 어느정도 봐야하는거임? 직관적으로 설명 좀
-
음… 좋아좋아
-
소신발언) 1
삼도극 무등비가 있었다면 내가 25수능 수학 1등급이었을 것.
-
소수점 둘째짜리 호감도 32
-
오르비 ㄹㅇ 음 7
ㄹㅇ 글 쓰는 사람만 쓰네 맨날 보던 사람이 대부분이고 저렙노프사 뉴비들 전멸인데 거의
-
현역은 현역끼리 놀고 n수는 그냥 자기들끼리 섞여서 노는 듯 사실 어느 정도부턴...
-
ㅅㄱ
-
2년 쉬었다 다시 보는거라 개념약간 헛갈림 삼도극 시발점 목달장 로스쿨 사탐런 수학...
-
안녕하세요... 이 고민을 말할 곳이 없어서... 어디다가 올리지 고민하다...
-
도표 없는 물2생2함
-
응응 안 써줄게
-
사랑도안돼 그렇다고 슈퍼핵인싸도 아님 공부라도 해야 한학기끝에 뭐가 남음 ㅅㅂ...
-
특정당할까봐 못하겠다..
-
훈남에 키크면 인싸야..?
-
씻을게 2
찝찝해서 물리포기
-
나는 호감도 몇임 10
나 호감 아닌가.. 나 싸우지도 않앗고, 나 나 아무것도 안햇는데,,
오오오오 이게 그 체바? 메넬러그?인가 그 뭐시기 인가용??
메넬라오스의 정리를 조금 바꾼겁니다!
오오 담사합니다
메넬 변형이에요
근데기하 한정은 시소가더편하다생각
귀하디 귀한 기하 칼럼러는 일단 7ㅐ추
추천은 덕코가 쌓이므로 감사히 받습니다

무지성 사교좌표계에서 공식 쓰기로...?아 저가 약간 피타고라스학파라 좌표 잘 안씁니다... 좌표는 미적에게 넘겨주도록 하고

사교좌표도 사랑해줘요이런 기하 관련 실전개념들은 어디 문제집? 어디 강의에서 주로 얻으셨나요
그냥 스스로 체득했습니다
어디서여??
문제 풀면서요

감사합니당아니.. 이정도 퀄이면 팔로우를 안 할 수가 없잖아요..
당신이 먼저 꼬셨어
아뇨.... 전 오르비에 쉬러 오고 싶은데... 칼럼도 노력하겠습니다

와.. 기하칼럼 계속 올려주시니 팔로우를 벅벅아니 뻘글 쓰고 싶은데요... 칼럼 귀찮아요
응애 저 미적러인데 저게 그 시?소?정?리? 비슷한 건가요??
사실 시소정리 까먹었는데 비슷한 상황에서 쓰이는게 맞긴 한거 같습니다
기하하면서 느끼는건 좌표잡고 하는거보다 도형의 성질 그 자체로 풀어내는게 훨씬 맛깔나고 풀어냈을때 카타르시스도 더 큰거같아요
좌표는 뭔가 반칙을 쓰는 기분이긴 하죠

기하는 안하지만 일단 팔로우