첨점 미분가능 관련질문!!!!
게시글 주소: https://orbi.kr/00056018482
f(x)가 x=a에서 첨점을 가질때
f(x)(x-a)는 x=a에서 미분가능
이라는데 왜 그런건지 모르겠어요
설명해주실 천사를 찾습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜아무말이없어
-
막상 끝나니 ‘설마 진짜 이게 끝?’이란 생각이 드네
-
이재명 체포하려고 사무실 들어갔는데 이미 e선마로 낭낭하게 국회 입갤중이었던 ㄷㄷ
-
윤카 안뽑은 이유가 여실히 드러남
-
윤 + 국방장관 귝방장관은 군인들을 자아가 없는 자기 말에 절대복종을 할 거라 생각...
-
과외 하다가 반수하게 되면 보통 언제쯤 말씀드리나요? 0
어떻게 진행하시나요?
-
미쳤다
-
화1.2는 하이탑으로 일반은 줌달 유기는 모르겠어요 대학 가기 전에 다 끝내고 가고...
-
뒤에서 비밀스럽게 뭐 하는거 아닌가 성동격서라는 말도 있는데.... 너무 음모론적인가
-
???????
-
"누가 선포했는데"
-
탱크엔딩아니면 탄핵되는 일만 남았다고 봐도 되죵?
-
안 자는 사람 손 15
댓 남겨봐요. 왜 안 주무시나요??
-
이건 중도 보수를 떠나서 여당 대표도 반대하고 국회 만장일치 나올만큼 옳고그름이...
-
계엄 해제 요구 가결에 “만세”…시민 2000명 집결, 국회 지켰다 [영상] 1
3일 윤석열 대통령이 44년 만에 비상계엄을 선포했다는 소식에 서울 여의도 국회...
-
그 전설의 노루 점핑이 윤석열임?
-
지금 이 상황 자체가 뉴스에 생중계 되고 있다는거 자체가 엉성한 계엄. 라떼는...
-
"尹정부가 계엄 준비" 홀로 외치던 김민석 재조명...미리 알았나 1
윤석열 대통령이 3일밤 비상계엄을 전격 선포하자 지난 8월부터 '현 정부가 계엄령을...
-
대통령 능지는 둘째치고 국방부장관도 능지박살이라는 말이되는데 이건 말이안될거같은데
-
ㅅㅂ?
-
이렇게 허술하다고 난 뭔가 더 있다고 본다
-
내가 윤석열보다 똑똑함
-
실시간 바로 묻혀버림 ㅋㅋ 정상화의 신 대석열
-
플랜C는 뭐냐
-
임기 절반밖에 안했는데도 기억에 빡 남네
-
다들잘자 5
굿나잇이야
-
여름방학을 1주일 해서
-
거의 끝나긴 했는데
-
잘까 그냥 0
에휴 이나라가 그럼 그렇지. . .
-
알코올 밈은 치워두고 그래도 이렇게 될 줄 알고 세운 계획이나 다른 생각이 있어서...
-
음모론 제외하면 순수 멍청 이슈 말고는 설명이 안되니까 3
오히려 뭔가 숨겨진 스토리가 있나 의심하게 됨 아무리 멍청해도 이렇게까지 멍청한 짓을 할까
-
기출 모의고사 복습 귀찮으신가요? 모플 한번 써보실래요? 0
안녕하세요 쉽고 빠른 모의고사 복습, 모플의 개발자 라쿠입니다. 모플은 쉽고 빠른...
-
그냥 이렇게 어설프게 한다고?? 꿍꿍이가 있을수도 있겠지만 그것보단 다른 이유가...
-
대체 어느정도의 베일에 쌓여있길래 계엄령을….
-
윤석열 얘기만 4시간 하다가 집오겠네
-
미안해 관심 좀 줄게
-
와....
-
이대로라면 국회에서 윤석열 대통령 탄핵 소추하고 헌재에서 의결하는건 시간문제인거...
-
ㅎㅎ
-
이과인데 고대를 온다면 안암공전의 언덕맛을 볼거에요
-
10시즌급 개노잼 같아보이는디
-
닉변 완 8
민족고대를 달라
-
근혜때마냥 탄핵집회 화력 안나와서 장작 던진건가
-
ㄷㄷ..
-
설치기원1일차 6
컷 10점 정도만 완화해주라ㅎㅎ..
-
대통령이 이정도까지 멍청할 수 있나 여기서 끝이라고..? 서울법대 검찰총장 한사람인데
g(x)로 치환해서 미분가능성의 정의 써도되고 (×-a)^2을 인수로 가져서 결국은 같은 거지만요
감사합니다!!!
x=a에서 첨점을 가진다
= x=a에서 연속이지만 미분 불가능하다.
f x g가 미분가능한 함수가 될 조건 (단, g는 최고차항의 계수가 1인 일차함수)
f가 x=a에서 연속이지만 미분불가능하다.
=> f는 x=a에서 함숫값을 갖지만 미분계수가 다르다.
즉 f x g가 미분 가능하려면 f x g를 미분한
f'(x)g(x)+f(x)g'(x)가 x=a에서 좌극한과 우극한이 같아야 하는데 f'(x)가 좌우극한이 다르기에 f'(x)g(x)가 f'(x)의 x=a에서의 좌극한과 우극한이 다르게 나와서 f'(x)g(x)+f(x)g'(x)가 x=a의 좌극한과 우극한을 같게 해주는 방법(같아야 미분 가능한거니까)은 0을 곱해 0을 만드는 수 밖에 없다. 즉 g(a)=0이면 되기에 g(x)=(x-a) 가 됨
따라서 f(x)(x-a)는 x=a에서 미분가능함
만약 f가 x=a에서 첨점마저도 못가지는 불연속 상태(불연속 지점의 좌우극한이 발산하는 경우 제외)라면 같은 원리로 f(x)g'(x)도 0이 되어야 해서 (x-a)가 두개 필요. 즉, f(x)(x-a)^2 는 x=a에서 미분 가능
근데 당연하겠지만, f는 x=a가 아닌 지점들에서는 모두 미분가능하다는 전제가 있어야 한다는건 알고있죵
와
진짜
천국가세요
감사합니다
뉴런 벅벅 들으면 모두 해결