4월 수학1/2 수업 안내(주말까지 할인)
게시글 주소: https://orbi.kr/00055891984
안녕하세요.
상승효과 이승효입니다.
선택과목 무료특강.
예상을 훌쩍 뛰어넘는 반응! 신청자가 270명 ㅠㅠ
저도 오랜만에 100%라이브 특강이라
아주 재밌게 잘 마쳤습니다. 정말 감사합니다!!!
신청자에게는 전원 쪽지로 링크 보내드렸는데
혹시라도 못받았다면 쪽지주세요.
자~ 오늘의 본론은 공통과목!
들어가기 전에 잠깐...
수강 할인 행사가 진행되고 있으니 놓치지 마세요.
프로모션이 이번주말에 끝난다고 하네요.
"수학1 개념속성 + 기출분석" 강좌 패키지 할인!
"수학2 셀렉션 - 삼차함수" 특강 (2만원입니다.)
시간표 보러가기
https://academy.orbi.kr/intro/teacher/#3)
1. 수학1 준킬러는 결국 도형
요즘 준킬러가 핫이슈죠.
더이상 27+3 킬러대비하는 시대가 아니잖아요.
그럼 준킬러 대비하려면 문제를 많이 풀면 될까요?
푸는 것도 중요하지만, 먼저 준킬러에 대해 잘 알아야겠죠.
작년 수능 문제 한번 봅시다.
문제를 보자마자 이런 그림이 그려진다면
이 문제는 더이상 준킬러가 아니라
시험끝나고 기억도 안나는 쉬운 문제인거죠.
수학1에서 각 단원별로 중요한 포인트가 있기는 하지만
수학1을 아우르는 핵심은 바로
점 이거든요.
미분을 배우기 전에 배우는 수학1은 무조건 점이에요.
그래서 자연스럽게 도형이 문제에 활용되는 것이죠.
따라서
수학1 준킬러를 쉽게 풀기 위해서는
도형을 제대로 공부해야 합니다.
두가지.
1) 중학교 도형 - 증명까지 마스터
2) 고1 수학 - 도형의 방정식 마스터
이런걸 교과서 그대로 정확히 이해, 암기(!!) 해야 한다는 뜻.
이번주 개강하는 수학1 수업을 들으면
도형이 수학1에서 어떻게 활용되는지
완벽하게 정리할 수 있습니다.
수학1과 도형을 한번에!
비대면 올라이브 수강도 가능합니다.
"수학1 시간표 보러 가기"
https://academy.orbi.kr/intro/teacher/252/l
2. 수학2는 그래프와 식세우기
삼차함수의 그래프는 아주 중요합니다.
아직도 많은 학생들이 내신 방식에 익숙하죠.
삼차함수의 성질을 잘 정리해서 외우기만 해도
문제 해석이 엄청나게 쉬워집니다.
연립해서 계산하기, 이런 태도를 버려야 되요.
상승효과에서만 배울 수 있는 꿀팁.
"기울어진 축"에 대해서 알려드릴게요.
그래프를 그려서 해석할때 아주 중요한 개념이에요.
1) 쉬운 버전
: 문제에서 "x=1에서 극점을 갖는다." 가 주어질 때
직선을 하나 그리세요. 이
직선은 y=f(1) 이고 그래프가 접하는 '축'이 됩니다.
그래프 모양은 아래 그림처럼 4개 중에 하나겠죠.
스치면서 위에서 접하거나 / 아래서 접하거나
뚫.접하면서 우상향하거나 우하향하거나
만약 최고차향의 계수가 양수인 삼차함수라면
보라색은 해당이 안될테니 신경쓰지 말고
나머지 세 개 중에서 하나일겁니다.
2) 기울어진 축
: 문제에서 "f(1)=3, f'(1)=2" 가 주어질 때
즉, 함숫값과 미분계수가 세트로 주어지는 경우
조건을 해석해보면 이런 경우 정말 많죠.
이걸 연립방정식 푸는데 많이 쓰죠?
노노. 그래프 바로 그릴 수 있어요.
함숫값과 미분계수의 조합은
그 점에서의 접선(기울어진 축)을 알려줍니다.
(1,3)을 지나고 기울기가 2인 직선을 그리면
f(x)는 무조건 그 직선에 접하게 되어 있어요.
즉 y=2x+1 이 f(x)의 x=1에서의 접선이에요.
극점을 알려주는 문제나, 접선을 알려주는 문제나
함숫값과 미분계수를 알려주는 문제는
정확히 똑같은 조건인 것이에요~
아래 그림처럼 기울어진 축 y=2x+1이 있고
그래프는 보라색처럼 위에서 접하거나
초록색처럼 아래서 접하거나
주황색처럼 뚫고 지나가면서 접하거나....
이렇게 함수의 그래프를 '축'이라는 관점에서 이해하면
그래프를 아주 쉽게 그릴수 있고
이 칼럼에서 설명은 안했지만 식도 간단히 세워집니다.
(여기서 축은 x축 뿐만 아니라 평행이동된 축,
또는 기울어진 축도 포함되겠죠)
"셀렉션 - 삼차함수" 특강을 들으면
3시간만에 삼차함수에 대한 정말 많은 것들을
체계적으로 배울 수 있습니다.
속된말로 정말 지리는 경험, 약속하겠습니다.
등급에 관계없이 정말 깜짝 놀랄거에요.
이번주말까지만 2만원에 할인중입니다.
"셀렉션 특강 수강신청하러 가기"
https://academy.orbi.kr/booking/gangnam/payment?selected_lecture=732
그럼 다들 화이팅하시고!
궁금한 점은 댓글로 남겨 주세요 :)
유튜브에서도 꾸준히 공부법 관련 컨텐츠가 업로드 중입니다.
구독 부탁드릴게요. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영어 3 떠도 서울대 고대 가면 되지
-
사람이 귀신보다 더 두려울 수도 있다는 사실에...
-
내가왔다 8
-
외적 이상형 10
수민눈나 엔믹스 규진 조이현 전소니 좀 일관성 있어보이나요?
-
내일 점심 매뉴 추천좀요
-
ㅈ같은 불면 8
아
-
짜치는 행동이나 말을 해도 억지부리면서까지 이해해줄려고함
-
요즘 새르비 멤버 좋음 13
사람들이 착하고 귀여움 나처럼
-
고13모국어 0
이번에 4떴는데 (1점차이로...) 빨더텅고1꺼 풀면될까유..
-
ㅈㄴ 답답함
-
하...
-
아 지랄하지마 4
뭔 5월달에 모기가 있냐굿~~~!!!
-
아파해 뒤돌아선 슬픈 내 뒷모습만~ 아직도 풀리지 않은 오해들 그 속에 헤매이는 너를 향한 그리움~
-
극소를 3개 가진다면 a>0일때랑 a<0일때 각각 캐이스 2개여서 4가지 나오는데
-
김쌈무ㅡㅡ
-
후기입니다 친구놈도 옯창이되 허허허
-
안자는사람 15
-
불까지 켜놓은채로 잠들었음뇨
-
하 시발 영원히 잠들고싶다
-
일단 전 틀림
-
오늘도 1
살기싫다
-
개념부터 해야하는데 주말마다 1.7배속으로 하루에 10강씩들을까 ㅋㅋ
-
이러는거 열받는데 우리라고 10년 뒤 대학 들어올 애들한테 그런 얘기 안할까싶음
-
기계반란 터지면 나부터 처단당할듯 ;;
-
ㅆㅂ 존나부러워진다
-
제곧내
-
잘모르겠음 메디컬빼면
-
ㄹㅇ
-
군대낀거에다가 수시는 반칙이지
-
29 30 안어려웠나요??
-
살면서 5리딸 친듯 ㄹㅇ 곧 2 나온다는데 기대되네
-
문득 든 생각 1
얼버기 얼리 버그 기상 도 될 수 있음ㄷㄷ
-
레버취 1
잘자용
-
절하고 먹음
-
울의랑은 그래도 선호도 비비는 것 같은데 카성 하고 고민할급도 되나요?
-
확통 100점 받아야지
-
사수 이상 학과 13
나라에서 앰생 사수이상인 애들은 rotc 마냥 N수tc 만들어서 응? 사교육 제대로...
-
왤케 시발 2
다 아는사람이지?
-
이거때문에아픈기억도있고 브릿지 한 30개 푸는데도 극복이 잘 안되네요.. 맨날...
-
수학 실력 더키워야겠다 11
도형문제에서 잔계산이 많이 나오는걸 보고 아직 많이 부족하다는걸 깨달음
-
너무많음 아니 애초에 하루에 15시간이말이됨?
-
K엔비디아, 이 나라 정치 환경에선 헛된 꿈이다 [김경원의 경제 프리즘] 3
#1 ‘구약성경’의 창세기 40장과 41장은 형제에 의해 이집트 종으로 팔려 간...
-
현우진 만의 스타일이 있음 느낀점 간략하게 말해보자면 일단 14번에 도형 찍혀있으면...
-
애 어머니가 그냥 기출아니면 사설 실모만 ㅈㄴ 돌려달라하고 숙제는 걍 못해온다해서...
-
자기 전까지만
-
1컷 85고 2컷 68 3컷 62인데 만점 두명임 ㅆㅂ
-
낼 물1 만 주구장창 파볼까 일요일엔 화1하고
-
. 8
첫번째 댓글의 주인공이 되어보세요.