[Team PPL 칼럼 16호] 수학 문제를 ‘제대로’ 읽어본 적이 있는가?
게시글 주소: https://orbi.kr/00055127809
안녕하세요! Team PPL [Premium Private Lesson] 수학 소속 수하기 팀 입니다 :)
저희 Team PPL(이하 PPL)에서는 일주일 마다 과목별 하나씩, 총 2개의 칼럼을 제작하여 업로드하고 있습니다.
---------------------------------------------------------------------------------------------------
수학 문제를 ‘제대로’ 읽어본 적이 있는가?
- 모르는 문제에는 무엇이 숨어있는가?
당신이 지금 공부하고 있는 교재를 꺼내어 별표를 친 문제들을 찾아 보자. 어느 정도 풀이를 끄적이다가 막혀 포기해 버린 문제, 때로는 풀이를 쓸 엄두조차 내지 못하고 쫒겨나듯이 도망친 문제들이 보일 것이다. 단순히 “어떻게 풀지 모르겠다.“ 라면서 해설지를 펼치기 전에, 다시 한번 문제를 곱씹어 읽어보는 시간을 가져본다면 어떤 내용들을 얻어갈 수 있을까?
이번 칼럼에서는 당신이 문제를 왜 풀지 못했는지, 어떤 구간에서 벽을 느꼈는지 분석하는데 도움이 될 만한 내용을 소개하려 한다.
- 수학문제의 문법은 생각보다 단순하다.
유형화된 문제를 풀 때 대부분은 문제에 제시되어 있는 도형 또는 식을 보고 풀이를 시작하는 경우가 많다. 그러나 학력평가 또는 모의고사 기출문제를 풀게 되면 기존에는 풀어본 적이 없던 새로운 표현들이 쏟아져내리기 시작한다. 많은 사람들이 이쪽 문제를 처음 풀게 되면서 부딪히는 벽이 이에 해당할 것이다.
그럼에도 불구하고, 위에서 언급한 ‘새로운 표현’ 역시 수학 문제의 기본적인 구조 내에서 서술되어 있다. 과연 수학 문제가 가지고 있는 공통적인 문법이 무엇인지, 기출문제에 실제로 어떻게 적용되어 있는지 알아보자.
- 상황제시, 조건, 구할 값
문제를 읽으면서 위의 세 파트로 나누어 읽고 이해하는 연습을 하면 좋다. 각 부분은 문제의 풀이에서 다음과 같은 역할을 한다.
1. 상황제시
문제 풀이에서 사용되는 모든 성분들은 초반부에 모두 언급된다. 사용되는 성분이 만들어지는 과정 또한 순차적으로 서술된다. 이때, 후술할 조건과 같이 문제를 풀 때 간접적인 힌트로 사용되기도 한다.
2. 조건
1에서 언급한 성분들 이외에 추가적인 힌트가 필요할 경우, 문제에서 구하고자 하는 값을 언급하기 전에 제시해 준다. 문제를 계산하기 위해 세우는 식, 계산과정을 정하는 데 있어서 3과 함께 가장 중요한 부분이 된다.
3. 구할 값
구해야 하는 것이 제시됨으로써 계산의 목표가 최종적으로 확인되는 과정이다. 계산의 방향 역시 구해야 하는 값의 형태를 통해 간접적으로 유추할 수 있기 때문에 주의깊게 읽어야 한다.
- 문제를 읽는 것만으로 풀이의 방향을 결정할 수 있다.
최종적으로 기출문제를 위의 순서대로 읽어보도록 하자. 상황제시, 조건, 구할 값을 순서대로 문제에 각각 파란색, 노란색, 빨간색으로 나타내었다.
[2021년 3월 고1 학력평가 16번]
1. 상황제시
삼각형 ABC에서 각 A와 함께 외심을 언급하는 것으로 시작하는 것을 통해 외심의 성질 중 각과 관련된 개념을 준비할 수 있다. 또, 점 D가 만들어지는 과정을 통해 2에서 언급할 조건을 삼각형 BCD와 연결지어 생각할 수 있도록 해준다.
2. 조건
BD=BC가 1을 읽으면서 삼각형 BCD가 이등변삼각형임을 언급해주는 힌트로 사용할 수 있다면, 힌트를 각BCD=각BDC로 변형해 사용할 수 있을 것이다.
3. 구할 값
각 OCD의 크기를 구하라는 것을 통해 문제에서 계산할 성분들을 각으로 한정지어 생각할 수 있고, 문제에서 제시된 각들을 각OCD=x로 두어 나타낸다면 2에서의 조건을 x에 대한 방정식을 푸는 것으로 정리할 수 있을 것이다.
[2021년 3월 고2 학력평가 19번]
1. 상황제시
‘자연수 n에 대한 조건‘의 형태가 ‘어떤‘이 포함된 x에 대한 명제임을 확인하고, 조건의 참, 거짓의 여부가 n에 대하여 결정됨을 알 수 있다. 또, n이 자연수임을 풀이과정에서 간접조건으로 활용할 생각을 할 수 있겠다.
2. 조건
’어떤‘이 포함된 명제가 참이 되어야 하므로 조건을 만족시키는 x의 값이 존재함을 보이면 되는 것으로 해석할 수 있다. 따라서 이차함수의 최대 최소를 계산하는 과정이 포함됨을 알 수 있다.
3. 구할 값
최종적으로 문제풀이에서 이차함수의 최댓값이 0 이상이 되는지의 여부는 n에 의하여 결정되므로 이를 n에 대한 부등식으로 해석해야 함이 n의 ’최솟값‘을 묻는 것을 통해 드러남을 문제를 읽는 과정에서 파악할 수 있을 것이다.
[2021년 수능 나형 20번]
1. 상황 제시
a의 값이 1보다 크다고 제시된 것이 함수 f(x)의 그래프를 그리는 데에 영향을 준다는 것을 2번과 연계하여 해석할 수 있을 것이다. 또 함수 g(x)의 변화가 f(x)의 적분값에 의해 결정되는 것을 통해 a의 값이 문제의 조건을 해석하는데 중요한 요소로 작용할 것을 예상할 수 있다.
2. 조건
조건이 극값의 존재 여부를 확인하는 것으로 제시되어있기 때문에 방정식 g’(x)=0의 근과 그 좌우에서의 부호 변화를 조사하는 과정이 문제풀이의 큰 방향인 것으로 해석할 수 있다.
3. 구할 값
구해야 하는 값이 2의 조건을 만족시키는 a의 ‘최댓값’을 구하는 것임을 통해 조건을 만족시키는 a의 값이 유일하게 결정되지 않는다는 것을 확인할 수 있다. 따라서 방정식 g’(x)=0의 근이 a의 값에 따라서 어떻게 변화하는지를 g(x)를 미분한 후에 조사해야 할 것으로 예측하면 후에 다시 고민할 방향을 정할 수 있을 것이다.
- 눈풀이는 중요하다.
단순히 숫자의 대입을 통한 계산에만 집중하지 않고, 지금처럼 먼저 숲을 보는 연습을 꾸준히 할 것을 추천한다. 타격지점이 정밀해 질수록 계산과정이 줄어듦을 몸소 체감할 수 있을 것이다. 문제를 풀면서 접근법이 떠오르지 않는다면, 문제를 읽고 이해하는 과정속에서 본인이 미처 파악하지 못한 개념, 또는 사고과정이 있는지 찾아보도록 하자. 위의 세 문제의 자세한 풀이과정은 첨부파일을 통해 확인할 수 있다.
칼럼 제작 | Team PPL 수학 연구소
제작 일자 | 2022.02.26
Team PPL Insatagram | @ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
새르비 좋당 0
평화로워
-
아직은 너에게~ 0
추억이 되는게~
-
나도 사랑이 하고 싶다고 씨발 상대가 남자라도 좋으니 사랑 받고 싶다고
-
투두메에 심야자습란 만들고 ㅇㅇ이랑 만나기 이딵거 적고 공감 누르면서 놀기 점심...
-
이재용이 1조 잃었다고 우는거랑 다를게 없다
-
자살뛰자걍 1
답이없네
-
고1 11월 이때까지도 근본이 없엇음. 근데 이때쯤 되니 원서를 봐야하는 상황이...
-
그러게 왜 갑자기 연락하는건데
-
모태솔로는 이제 설 곳이 없구나.
-
걔가 댓글 단 블로그 게시물 차마 못 지우고 비공으로 돌려둠..
-
주변에 여성 지인이라고는 1도 없는 수학으로 치면 기탄수학부터 해야할상태인 노베인...
-
순애란 13
그냥 그 사람 얼굴만 봐도 행복해지는 거 아닐까요 저도 현우진이랑 순애 중이에요
-
(자동생성목록임) 잡탕밥을 넘어선 개밥그자체..
-
안정형 -> 유지하세요 굿 잘하고 있음 극회피형 or 극불안형-> 그냥 연애하지...
-
같이 느낄 여르비 구함
-
물론 농담이엇지만 논리 진정한 사랑에는 사회적 장벽이 필요함 로미오와 줄리엣같은 것...
-
국어국문 종교학 철학 사학 중에서요 국어국문이 그래도 젤 낫겠죠..?
-
밥주 1
ㅜㅜ
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
연애메타인데 3
지금 헤어지고 있음 존나 쳐울면서 나 너무 한심하다 진짜
-
얼마나 사랑해야 순애인건데...
-
이게 남들 연애썰 하나씩 들을때마다 기억이 되돌아와 뭔가 기억하면 안될게...
-
사랑받을 준비 완료 오직 나, 나만 좋아해줘 내 마음속에만 접속해줘 I don't...
-
회피형시러 5
당당하게 나 너 좋아한다 나 이거 싫어한다 라고 말하라고ㅡㅡ
-
본인도 고3 때 롤을 하다가 잃은 게 많음 근데 고능아들은 제외임 고능아들은 ㄹㅇ...
-
이거 어떻게 못하나요? 실명이랑 생년월일을 다르게 입력해서 다시 정정하려고 보니까...
-
수2특 7
재미없음
-
중등 수악 잘 모르는 상태엿지만 수학 상 수학 하, 수학 1로 떼웟음 중등 삼각비...
-
어릴 때는 행복의 역치가 낮아서 사소한 거라도 너무 행복한데 나이 먹을 수록 행복의...
-
난 자만추파임 2
소개 받으면 항상 망해서 그런거 아님
-
아이돌이랑 유사연애 하면됨
-
나 사실 방금 7
롤하닥 ㅏ키보드에 하이볼 업질러서 나간거임 미안하다
-
상대 마음에 대해 판단하기 힘들 때 제3자한테 물어봐요 근데 사실 단둘이서 만나고...
-
공부해본 적 없음. 다른 과목은 당연하고 중등 수학 개념도 반은 모름 특히특히...
-
고3때 좋아햇던 5
그친구는 벌써 졸업햇으려나 아나운서가 꿈이엇는데.. 티비에서 보게 되려나
-
설랬던 기억 0
침대에 누워서 럽코 소설보면 설레긴했었음
-
나 진짜 열심히 할거니까 미팅이라도 잡아줘
-
연애메타를 보는 본인 11
소설읽듯이 읽음
-
진짜 개 잣밥임 미친 성장속도라는거임
-
수학실력과 이성적 매력도에는 유의미한 음의 상관관계가 잇다
-
첫사랑썰 4
과거로 돌아가면 기억나겠지 지금의 나는 기억이 안난다 사실 그리고 저는 첫사랑이랄...
-
불멸의 영웅 이렐리아 << 하............ 일러스트 걍 레전드임
-
아침 공기 ㅈ같은것도 한몫함 널널하게 점심 먹고 보는걸로 해 그냥
-
텍사스홀덤을 꼭 한 번 해보세용 진짜 재밌음 이건
-
썸녀있으면 썸녀한테 없으면(ㅈㄴ적은)여사친들한테 도 없으면 남자애들한테도 걸음.....
-
에휴이 Xayah 얘기하면 진짜 차단
-
패드 ㅇㅈ 0
-
거북이 키우는데 지금 울음소리는 아닌것같고 새벽3시에 거북이쪽에서 소리남 집이...
-
알파메일 친구썰 0
옆집 여자인데 나이차가 3 4살 낫대 걍 가끔 얼굴만 스쳐지나가며 보는 느낌 술먹고...
감사합니다!
수학도 국어만큼 사고하는게 중요하다고 생각합니다
잘읽고갑니다!!