칼럼) 수학_개념을 의식화하고 이를 반복하여 체화하기
게시글 주소: https://orbi.kr/00054968089
안녕하세요!
지난번에 제가 "수능 수학을 공부하며" 라는 칼럼을 작성하였는데,
거기서는 어려운 문제를 만났을 때 어떤 행동양식을 취해야하는지에 대한
얘기를 다루었습니다.
오늘은 그때의 내용을 톺아보면서 어려운 문제를 만났을 때 어떻게 해야할지에 대해
다시 한번 생각해보고 ( 미적분이 아닌 공통 문항을 가져왔습니다.)
그러면 '나는 이 문제에서 뭘 어떻게 배워야 수학을 더 잘할 수 있을지'에 대해
제가 예전부터 고민했던 것들에 대해 말씀드리겠습니다.
시작하기 전에 https://orbi.kr/00054493225 요 글을 보시고 오는게 좋을 것 같습니다!
우선 제 아래는 제 프로필입니다..
영재학교 차석 졸업
강남대성 본관 재수
2021 6.9.수능 국어,수학 1등급
2021 수능 생명과학 만점
울산대학교 의예과 합격
유현주 선생님 조교
+) 저는 공부는 학생이 하는 것 이라고 생각합니다. 물론 저도 다양한 수업들을 들었고
그걸 참고해서 공부하며 실력이 늘기도 했습니다.
제가 얘기하고 싶은 건 강의가 100%를 책임져주지 않는다는 것 입니다.
강의를 통해서 혹은 이런 칼럼들을 통해서 공부의 방향을 잡고, 그 이후부터는
실천, 반복, 체화를 통해 실력을 늘려나가야 합니다. 그러니
나에게 맞는 방법을 찾아보고, 혹은 선생님의 방법을 나한테 최적화 시키는 과정을
꼭 거치시고, 좋은 방향을 잡아나가시길 바랍니다!
1. 의식과 무의식
제가 수학 공부하면서 했던 하나의 생각입니다. 학습의 과정을 도식화 한 건데요.
무의식 1은 약간 뭘 어떻게 해야하는지 잘 모르겠고,
이것 저것 만져보다가 풀리면 풀린 것이고, 아니면 아닌 그런 단계입니다.
어려운 문제를 만났을 때 저는 대부분 무의식 1처럼 문제를 풀었던 것 같습니다.
의식 단계는 이제, 그 무의식 1처럼 풀었던 문제들을 의식화 하는 과정입니다. 즉
내가 어찌어찌 해서 풀었던 문제에서, 이건 어떤 개념이고 이건 저런 개념이다.
라고 , 그저 생각해왔던 것들을 키워드를 통해 의식화하는 과정입니다.
제가 이전 칼럼에서 풀었던 문제에서 키워드를 변수가 두 개인 최대소 구하기로 뽑아냈던 것 처럼요.
무의식 2는 그럼 의식화 되었던 개념들이 이제는 체화되어서 더 이상 개념화를 하지 않아도 자연스럽게
문제가 풀리는 그런 단계입니다.
그래서 간단하게 이 세 단계를 설명했는데, 여기서 중요한 것은
무의식 1에서 의식 단계로 가는 의식화 입니다.
내가 키워드를 잡은 이상 그 개념을 반복하기만 하면 무의식 2로 가는 것은 간단합니다.
그저 반복, 학습, 체화의 과정을 거치면 되니까요.
덧셈이라는 예시를 들어보겠습니다.
지금 우리는 51 + 17 이라는 걸 들었을 때 68이라는 결과를 자연스럽게 도출할 수 있습니다.
딱히 어떤 생각을 하지 않아도요.
하지만 의식화를 하는 과정은 꽤 까다로운 것 같습니다. 내가 잘 모르는 것을
개념으로 끌어내야하니까요. 그래서 오늘은 이것은 연습하는 방법에 대해 많이 생각해보려고 합니다.
2. 까다로운 문제를 만났을 때의 행동 양식
이전 칼럼에서 다루었던 3단계에 따라서 이 문제를 진행해보겠습니다.
1단계 문제에 나와 있는 조건 파악 그리고 정리하기
우선 구하는 것은 n의 조건 입니다.
그 후에 문제에 나온 조건들을 순서대로 정리했고 중근을 두 개 가진다는 것이
문제의 핵심이겠구나라고 생각하고 넘어갔습니다.
이차 함수는 최솟값이 존재한다는 것을 통해 꼴을 유추했습니다.
2단계 내가 할 수 있는 한 조건을 이용하고 정보를 추출하기
자 이후에는 1,3조건을 통해서 진행시킬 수 있는 내용입니다. 계수가 0보다 크고
최솟값이 음의 정수임을 나타냈습니다.
이후에는 중근이 2개라는 의미를 파악하려고 노력했습니다.
중근을 생각해보면 f(x)라는 이차함수가 최솟값에서 y=0에 접하나?
라고 생각할 수 있지만 최솟값이 음의 정수이므로 이는 불가능 함을 파악했습니다.
그 후, 아 x^n-64에서 중근 1개 f(x)에서 중근 1개 이런 꼴이 아니구나
각각에서 근이 2개씩 나오고 그 근이 서로 같은거구나 라는 것을 파악했습니다. ( 이 부분에서 시간이
조금 걸릴 수 있습니다. )
3단계 아이디어를 생각하기
2단계에서 생각했던 아이디어를 구체화 시켜 문제를 풀어주면 됩니다.
만약 여기서 생각했던 아이디어대로 풀리지 않으면 다시 2단계로 돌아가
아이디어를 생각해보면 됩니다.
두 실근이 같다는 것을 이용해 답을 구해주면 됩니다.
3. 문제를 통해 얻어가기 - 의식화하여 개념을 저장하기
n제나 기출을 풀면서 까다로운 문제를 만났을 때의 공부법에 대해 말해보려고 합니다.
앞선 내용들의 연장선 입니다.
제가 1번에서 의식화라는 것이 중요하다고 말씀드렸습니다.
뭔가를 의식화 한 후에 이를 반복하여 무의식적으로 문제를 풀 수 있도록
하기 위함입니다.
이 문단은 그래서 의식화는 어떻게 하냐에 대한 이야기 입니다.
사실 여기서는 사람마다 너무나 다른 방법을 가질 수 있고, 제 방법 또한 아직 완성됐다고 생각
하지 않기 때문에 아 저렇게 할 수도 있겠구나라고 생각하면서 봐주시면 되고,
본인에 맞는 방법을 더 생각해보시길 바랍니다!
우선 저는 키워드화를 주로 이용했습니다.
어려운 문제를 풀거나 혹은 틀렸을 때, 그 문제를 풀기 위한 아이디어를 내가 사용하는
용어를 통해 키워드화 시키는 것 입니다.
방금 문제와 같은 경우는 "중근의 의미와, 중근이 2개일 때의 가능성" 으로 키워드화 했습니다.
이것을 오답노트나 수학 개념 노트에 적어놓고 문제의 상황을 같이 적어 복습하고 학습하는 것입니다.
이후에 또, 비슷한 문제가 나온다면 그 문제를 풀고 세워놓았던 키워드에 이를 추가시키면서
반복하면 됩니다.
만약 나오지 않는다면, 까먹고 있다가 주기적으로 한번씩 복습 + 문제에 나오면 다시 복습
정도로 진행하였습니다.
이렇게 쭉 진행하다보면 개념 노트엔 교과서에는 나와있지 않는
피부로만 느낄 수 있는 다양한 개념들이 내 용어로 키워드화 된 채로 저장되어 있을 것이고,
이중 몇 개는 반복되고 체화되어 완전히 내 머리속에 들어가 있을 것 입니다.
또 그렇지 못한 것들은 적혀있는 문제 번호나, 앞으로 만나는 문제들을 통해 정리해나가면 된다고 생각합니다.
수학 공부도 이처럼 다양한 개념들을 반복해 학습하며 체화시켜가야 합니다.
(사실 반복과 체화는 제가 수험생활을 하며 가장 핵심적으로 세웠던 것이기 때문에 많이 반복됩니다..)
어려운 문제를 통해 느끼는 막막함은 분명 수험생에게 스트레스를 줄 수도 있지만
그 문제에 나온 개념 하나하나를 내가 흡수해간다고 생각해주세요.
무언가에 부딪혀보는 것이 수학에서는 실력 상승이 된다고 생각합니다.
그 과정에서 우리는 학생인 우리가 할 수 있는 일을 묵묵히 해나가면 될 것 같습니다 :)
오늘도 부족한 칼럼 읽어주셔서 감사합니다!
어떻게 쎃으면 좋겠다. 혹은 어떤 주제를 다루어 줬으면 좋겠다와 같은 것들도 댓글로
알려주시면 정말 감사하겠습니다.
0 XDK (+11,000)
-
10,000
-
1,000
-
대치동 35년 내력이 쌓여 극소수 최상위권에게만 전도된다는 극강의 비술 국영수탐탐...
-
이런 학구적인 분위기 너무 좋은듯
-
짐정리하다 못봄
-
ㅇㅈ 못봤다 0
존잘 ㅇㅈ이라 살았다
-
메디컬 스카이 에피센츄 고트들도 심사위원에 있어야하지만 칼럼의 주된 독자층인...
-
산타는 돌고래 (1379700) 극 야 (1350264) ^!바리기...
-
누구 있나요?
-
20레벨까지 어떻게 올리지 20레벨까지 올려야 뉴스를 긁어올 수 있는데 고민중이네요
-
오랜만에 ㅇㅈ 10
.
-
질문글 10
저 올해 6모 몇등급 가능할까요??
-
내가 ㅈㄴ 자세히 답을 해 주는데 대댓 안 달아서 내 답을 확인한 건지 안 한...
-
신 난이도 에바야
-
안녕하세요? 저는 17살 자퇴생 노베이스입니다. 올해 3모에서 5등급 51점이...
-
난 이걸로 정착한다....
-
수능 전에 7
믿거나말거나 이슈가 한창이었죠… 형님만 믿고 연계 선별은 잠시 밀어뒀는데… 언제...
-
내가 아직 성공 못한 실패인간이라 답해도 되나 싶어서 망설여짐
-
질문글 3
이틈을 타서 질문하고싶습니닷.. 제가 입시판에 진짜 진짜 노베라 핑프같겠지만 오르비...
-
덕코좀 0
덕코좀
-
1. 질문 자체가 너무 방대, 모호하거나 ex) 확통 5등급인데 6월까지 수학 공부...
-
아니 1277170 슨슈 뻘글만 싸면 어뜨캅니까..... 죄송했습니다.. 벌은...
-
그냥 무승부 하죠?
-
연카성고 의대 정시 일반전형 목표로 물1물2는 미친 짓인가요? 냉정하게 투표...
-
어지럽네
-
진짜 이거 뜯어말리고 싶다
-
호감이면 댓 달아드림 23
-
뉴비라서 울었어ㅠ
-
3모는 100점이고 3덮은 30번 반쯤 풀고 찍맞해서 96 나왔습니다. 현역이라서...
-
역시 도라에몽은 6
이 사진이 제일 귀여워
-
느린맘이라는 강민철 프사랑 그사람 따라하는 빠른맘이라는 강민철 프사가 메인에 같이...
-
궁금
-
ㄹㅈㄷ 고능아들이 다 심사위원으로 들어가 버렸으니 우리같은 범부 담요단들이 상품을...
-
힌트:가입 이전임(눈팅)
-
넝~담
-
마지막 덕코드림 12
500덕씩 마감전까지
-
누가 누군지를 모르겠네
-
그래 리젠은 이래야지
-
요즘 여러 고민들을 하고 있음 저는 최근에 노엘 (장용준) 욕먹는거 보고 놀랐거든요...
-
오... 캐스트다
-
반수생 선택과목 0
삼반수생입니다 작년 언매 미적 생 지 96 92 90 75 라서 지구는 무조건...
-
오랜만에 마치 수능직후 오르비를 보는듯한. 그땐 좋았지
-
!! 진행 방식이 변경되었습니다 !! 참고해주십시오 대상(1인) : BBQ...
-
이과고 이번에 사탐런햇어요 사문은 끼고 갈건데 단순암기 싫어해서 쌍윤 쌍사는...
-
비리가 있는가? X 안보관이 투철한가? O 검찰 출신인가? X 비상계엄과...
-
지브리풍 그림 지피티로 그린 네컷만화 이거 존나 보임
-
덕코드림 4
500덕씩 마감전까지
-
금테까지 50명 2
야 기분 좋다
-
덕코 테스트
-
https://orbi.kr/00028826951

간만에 좋은 수학 칼럼 읽고 가네요감사합니다 ㅎㅎ
잘 읽었습니다. 감사합니다. 꾸벅
저도 강남대성 다니는데 오늘 개강이네요!!선배님 좋은말씀 감사합니다.
이런 게 진짜 칼럼인 듯. 그저 그럴 듯한 말재주로 풀이만 서술하는 게 아니라 수학을 잘 하는 사람이 어떻게 생각하여 어떤 의식의 흐름대로 푸는지 명확히 보여주는 글인 것 같아서 정말 유익하게 읽었네요.

공부 원래 잘하시네인쇄하고 싶은데 어떻게 하는거예요? 폰이라 안되는 걸까요?