[수학칼럼] 증명을 공부하는게 고난도 문제 풀이에 도움되는 이유
게시글 주소: https://orbi.kr/00054696644
안녕하세요. 상승효과 이승효입니다.
작년에 올렸던 칼럼인데
최근에 증명에 대한 질문을 몇번 받아서
다시 올려드립니다.
Q. (학생의 질문)
"증명하는 과정이 수학에서 고난도문제를 대할 때 어떤 효력을 발휘하나요?"
A. (이승효의 대답)
증명이라는 것은, 교과서에 나와 있는 어떤 정리가 참이 되는 이유입니다. 예를 들어, 피타고라스 정리가 있죠. 그게 참인 이유가 증명이에요. 이걸 배우지 않은 상태에서 혼자서 증명하는 것은 어렵습니다. 증명은 과거에 누군가 엄청나게 똑똑한 사람이 한 것이기 때문에, 그걸 우리가 짧은 시간안에 떠올린다는 것은 어렵겠죠. 그러한 증명이 꼬리에 꼬리를 물고 연결되면서 수학이 발전해 온 것이고, 고등학교 교과서는 그러한 연결에 의해서 만들어진 유기적인 내용입니다. 예를 들어, 수학1, 수학2, 미적분 순서대로 이어지는 것에는 다 이유가 있는 것이죠.
증명하는 과정이 수학에서 고난도 문제를 대할 때 어떤 효력을 발휘하는가. 고난도 문제를 풀어봤다면 알겠지만 여러가지 발상들이 필요합니다. 도형문제라면 어떠한 상황에서 보조선을 어떻게 긋는다, 함수의 식이 주어졌다면 어떻게 한다, 등등. 문제만 풀어온 학생이라면 이러한 발상을 문제를 풀어야 배울 수 있는 거라고 생각하겠지만, 사실 수능에 나오는 모든 발상은 100% 교과서 증명 안에 다 들어있습니다. 그것을 바탕으로 수능 문제를 출제하니까요.
제가 전에 쓴 글에서 미분을 MRI에 비유했는데, 글 중간에 보면 MRI검사를 수백명 해보면서 인체의 신비를 깨달아가는건 어려운 일이라고 했죠? 증명을 배운다는 것은 마치 살아있는 인간을 배우기 전에 해부학을 배운다는 것과 같습니다. 이미 과거에 다른 사람들이 발견한 정보들을 바탕으로 교과서적인 원리들을 먼저 배우는 것이지요. 따라서 교과서 정의, 정리, 증명에서 배운 내용을 바탕으로 기출 문제를 풀게 되면, 문제마다 새로운 것을 배우는 것이 아니라, 문제를 풀면서 교과서 내용을 확인하게 되는 것이지요. 그러한 과정을 기출 분석이라고 합니다. 따라서 기출을 보기 전에 교과서 내용을 정확히 알고 있는건 매우 중요해요.
증명을 해야 하는 두번째 이유. 학생은 미분가능한 함수는 연속함수이다 라는 것을 증명할 수 있나요? 이건 실력지상주의 1주차에서 수업한 내용인데요. 대부분의 학생은 이걸 증명할 수 없습니다. 왜냐하면 미분가능한 함수와 연속함수의 정의를 정확히 모르거든요. 느낌으로만 알고 있고 식으로 정확히 표현할 수 없다면, 매우 쉬운 한줄짜리 증명임에도 불구하고 할 수 없습니다. 그럼 정의를 알고 있는 것이 왜 중요한가, 예를 들어 어떤 함수가 미분가능함을 보여라, 라는 문제가 있을 때 대부분 학생은 1.연속이다. 2.좌미분계수=우미분계수가 같다. 라는 순서대로 문제를 풉니다. 이건 아주 대표적인 잘못된 풀이라고 할 수 있는데, 정의를 잘 모르기 때문이구요, 저렇게 풀리는 3점짜리 문제는 문제가 없는데 4점짜리 문제로 가게 되면 해결이 안되는게 생겨요. 문제풀이의 접근방법은 반드시 정의->정리 순서대로 나아가야 하는데,오개념으로 풀다보면 접근 자체가 안되는 경우가 생깁니다.
증명을 해야 하는 세번째 이유. 직접 증명을 써보면 알겠지만, 아는 내용이라도 논리적으로 설명하는 것이 쉽지가 않습니다. 그건 학생들이 아직 논리적 사고력 또는 표현력이 부족하기 때문이죠. 교과서에 있는 증명들은 매우 간결하면서도 논리적입니다. 복잡한 증명은 고등학교 교과서에 나오지 않기 때문에 누구나 이해할 수 있는데, 그걸 자신이 직접 해보는건 쉽지 않아요. 강사가 설명하는 내용을 들으면 이해는 되지만 똑같이 설명해 보라고 하면 쉽지 않은것과 같은 이유입니다. 즉, 논리적 사고력을 키운다는 것은 다른게 아니고, 연습입니다. 수학은 그것을 연습하는 학문이에요. 고등학교를 졸업하면 미적분이 쓸모가 없을 수도 있고 대부분의 성인은 수학을 잊어버리지만, 중학교까지만 다닌 사람과 고등학교까지 수학을 배운 사람이 논리적 사고력에서 차이가 나는 것은 수학적인 연습을 했기 때문입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
극태전선플러그 꼽아주니 코드가 세개가 되어버렸
-
갑자기 자괴감 드네 12
내 지능은 왜...
-
노프사로변경 8
오르비를어떻게하던가해야지
-
26뉴런 들어야할까요? 25뉴런 전부 3회독했음 26수분감만 빠르게 풀고 엔제실모...
-
글 안쓰고 최소 한달은 글 안쓰겠소 뻥임뇨 인.
-
김상훈쌤 12
상훈쌤 문학 풀커리탈라했는데 파이널에 일등급습관 없ㅓ어지구 작년에 조금 실망이었다는...
-
왜없지
-
오르비좀접어야될듯 11
줄이든 휴릅하든 탈릅하든
-
06은 틀딱이 아닙니다 28
그러합니다
-
시대다니는
-
중솦 면접갓다옴 0
교수님들이 상당히 친절하셧음
-
그야 13번에 20분을 썼으니까
-
뭔가 하나로 뭉쳐서 으쌰으쌰가 아니라 각자 알아서 한 다음 하나로 묶어버리는 거...
-
아 갑자기 틀딱이 돼 버린 기분이야
-
어떻게이번수능까지 조질수가있었지...
-
분명 1차 잘 봐서 2차 안 가는 사람이 아주 조금이라도 있긴 할텐데 만약 이번...
-
시대 3합6은 맞췄어요 미적이었는데 내년에는 확통해서 확통사탐 예정입니다 지방에...
-
이궈궈던
-
육군 짬 안찼을땐 정비시간/주말 공부도 못하나요? 18
형이 짬 안채우고 공부 아득바득하면 폐급취급 당한다던데 주말공부나 개인정비시간에...
-
아직도 현실부정중임 난 6학년 때 수학여행으로 에버랜드 가서 구슬아이스크림 다섯...
-
강기분만 하면 충분한가요?? 인강민철이나 기출 따로 더 해야하나요?
-
패서라도 사탐런을 하게 해야
-
정시 스카이 18
언매 91 미적 88 영어 1 물1 48 생1 38 입니다 스카이 가능한가요? 과는...
-
알려주세요
-
여기서 ln~ 을 미분하몀 왜 저리 되는건가요?? f'(x) / f(x) 로...
-
키20cm만컸으면좋겠다 16
진짜덜도더도말고20cm만
-
그냥 가장 최악의 경우가 135점인가? 이 표 맞다고 하면
-
제곧내입니다.
-
얼마즈음될까요?
-
교재 증거거래 2
교재 (n제) 보통 얼마에 거래되나여???
-
.0
-
심심함.........
-
아니메 추천좀 2
심심
-
기원 1일차
-
컴공 과탐2과목 3
2학년때 물화생지 1 다들었고 3학년때 공대는 물2화2 듣는게 입시에 좋은 영향을...
-
나 귀여워? 5
응?
-
으하하하
-
맥북vs 갤북 0
.
-
입시 상담소 19
요새 거의 매일 왔었는데 이제 진짜 기말 기간이라 한동안 또 못 올 것 같습니다ㅠ...
-
.
-
이거에요 여러분
-
한 과목은 가채점보다 실채점 백분위가 올라가있을 거임. 왜냐면 저도 작년에 그랬기...
-
툭하면 뭔 교과서 찢고 대학 안가겠습니다! 공부 안하겠습니다! 선언하고 갑자기...
-
롤 밸런스게임 5
승률 60 모스트3 파이크 조이 흐웨이 vs 승률 40 모스트3 노틸러스 알리스타...
-
악몽이어서가아님 행복한꿈이어서슬픔 그게현실이아님을알기에...
-
진지하게
-
수능 어떻게 바뀌었는지 쳐봤는데 정말 요즘 너무 어려워 졌네요 ㅋㅋㅋㅋㅋㅋ
-
어머니 왜 고기를 구우시는 거죠
어떤 교과서로 증명을 연습해야 되나요?
증명은 부차적인 것이 아니라 교육과정에서 반드시 알아야 하는 내용이기 때문에, 중학교부터 고등학교까지 모든 교과서에는 같은 증명이 포함되어 있어요.
감사해요 선생님! 하나만 더 여쭙겠습니다ㅠ
미적분인데 수학,미적분,수학1,수학2 찬찬히 읽고 증명연습할 생각인데 더 해야할 교과서 있을까요? 아니면 4권도 충분하다 보시는지요~?
도형은 중학교 교과서도 봐야 합니다. 어렵지는 않으니까 금방 끝나요~