a<b일 때 0<af(b)<bf(a)이면 f(x)는 위로 볼록?
게시글 주소: https://orbi.kr/0005003804
(09년도 대비 9월 평가원 수리 가형 11번입니다. 문제에는 x,y로 조건이 써있는데, a,b로 수정했어요.)
요약
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
이때 f''(x)<=0임을 증명.
-----------------------------------------------------------------
조건
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
보기생략
일반적인 풀이
0<f(b)/b<f(a)/a이므로 '그려보면' 위로 볼록인 개형이 나온다. 따라서 위로 볼록으로 잘 그려서 삼각형 열심히 만들어서 풀면 됩니다.(보기나 뒤쪽 해설같은건 생략할게요. 논지에서 벗어나니)
물론 저렇게 풀면 답이 잘 나옵니다만, 수식으로만 유도해보고 싶은데 잘 안나오네요.
우선 a<b일 때 f(b)/b<f(a)/a이므로 (0,1)에서 f(x)/x는 감소함수입니다. 즉 (f(x)/x)'<=0이고, h(x)=xf'(x)-f(x)로 놓으면 h(x)<=0입니다.
f(0)=0에서 h(0)=0이므로 h(x)의 그래프는 원점을 지납니다.
이제 h(x)가 (0,1)에서 감소함수임을 보이면 h'(x)=xf''(x)<=0이 되고, x>0이므로 f''(x)<=0, 즉 위로 볼록임을 증명할 수 있습니다. 그런데 이게 진짜 잘 안나오네요. 식조작을 어찌하면 좋을까요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
순 잠잔 시간 9.5시간 7시간 반 자고 한 번 깨긴 했는데 그래도 좋다
-
제발 그녈 욕하지 말아줘 그누구보다도 내겐 좋은 여자니깐
-
제주도 가서 사온거 열개 넘게 있었는데 서랍에 있던거 꺼내서 어느순간 혼자 다...
-
큐레업 큐레업 4
일하러 가야지
-
시대인재 라이브 수학 단과만 들을라 하는데 달에 자려 퍼함 2 30이라는데 자료값이...
-
얼버기 1
사실 안젔을수도 있음
-
얼버기 0
2시간 30분 잤는데 헬스장 갔다가 스카갈까요 아니면 그냥 스카 갈까요
-
아 감기 걸렸다 0
일어나자마자 드는 불길한 느낌 목아 따갑다
-
있다면 쪽지 ㄱㄴ..?
-
오..
-
오늘 단타 5
자러감
-
반수 드가자잇 0
이왕 마음먹은거 후회없이 열심히 해볼게요이
-
의대를 갔더라면 0
붙잡을 수 있었을까
-
공부끗!! 0
롤체 1판만 하고 자야지
-
얼버기 3
좋은아침
-
역시 미루고 미루다가 마감 몇시간 전에 밤새는게 가장 효율이 좋아
-
3월부터 할건데 작수 3등급이고 수학만 좀 파서 1찍고 시작하고싶은데 국어 비문학...
-
오야스미 2
네루!
-
진짜 답이 없네
-
ㅂㅂㅂ 레알16강 축하드려요
-
사인 : 정기점검
-
아이고야 0
김새론씨가 돌아가신 날이 김수현씨 생일이라네요
-
기차지나간당 2
부지런행
-
현역 (생,지 순서로) 6모 34 9모 23 수능 12 재수 6모 13 9모 12...
-
잘시간 됐다 2
-
음바페 골 0
시발 어휴
-
8시간 잤다 4
얼굴이 번들번들
-
존맛이지
-
ㅈㅂㅈㅂ
-
아 아무리봐도 저거 A가 리보솜이라는 게 이해가 안되는데 설명해주실 분..?? ㅠㅠ
-
바이 바이 바이시클
-
헐
-
네이버 프로필이 생겻어요 ㅎ.ㅎ
-
급 피곤, 5
ㅍ퓨퓨
-
머지 0
누가 내 커피 를 훔쳐 갓 네
-
알바하고 여행가고 집 어느정도 잘살고 하는애들 보면 부러움 분명 대학은 내가 더...
-
이거 닮음의 종류 10
귀찮다.
-
곧 새르비도 못하겠군 15
나를 잊지말아줘 ㅜㅜ
-
어느날 말없이 떠나간대도 그뒷모 습까지도 사랑할래에
-
재밋겟다
-
다 성격보고 도망침
-
도화지가 없어도 0
그림을 그린다
-
난 잠시 그녈지켜줄뿐야 아무것도 바라는 것 없기에 그걸로도 감사해 워어
-
오르비 잘 자! 7
좋은 꿈 꾸기
-
근데 안자는 것 같음
-
https://orbi.kr/00016460498...
-
헤드셋 꺼놧다가 깜빡햇다 ㅋㅋ.
-
266일금방이지 3
응
-
뭐가 더 나앗을지 모르겟다, 달리기로 멀 엮으려하면 다 별로다
-
아직도 안 갓다 레전드 게으름
애초에 명제를 생각해낸 논리부터 고려하셔야 될 거 같아요. ' 00에서 0보다 클 때, f(a)/a>f(b)/b이면 f(x)는 위로 볼록이다'라는 명제를 수식으로 증명하려고 할 수 있지만, 역으로 반례를 찾으면 거짓이 됩니다. 아마 대강의 그림을 그려보시면 반례를 찾으실 수 있을 겁니다. 아니면 적당한 삼차함수를 잡으시고 기울기를 관찰하셔도 됩니다. 즉, 수식으로 참임을 증명할 수 없습니다.
조건이 af(b)/b뿐이라면 반례가 존재합니다. 그런데 실제 저 문제를 풀때 명시된 조건을 가지고 위로 볼록으로 판단해서 푸는 해설말고 다른 해설을 본적이 없어서 질문올린거에요 ㅎㅎ ㅠㅠㅠ물론 여기서 위로 볼록은 (0,1)에서의 위로볼록입니다.
저도 완전한 풀이 올리고 싶은데 수험생인지라 시간이 너무 오래 걸릴 거 같네요 ㅜㅜ(어려운 문제긴 해요 ㅋㅋ), 대신에 포카칩님이 쓰신 '수학영역의 비밀'이라는 책에 이문제에 대한 논리적인 풀이가 있습니다. 아마 해답지 말고 본문 속에 있을 거에요. 주변에 친구 책이나 아니면 서점 가셔서 한번 찾아보시길!!
오오 그렇군요 한번 찾아봐야겠네요 ㅇㅂㅇ
명시된 조건은
다항함수 f(x), f(0)=0 0