a<b일 때 0<af(b)<bf(a)이면 f(x)는 위로 볼록?
게시글 주소: https://orbi.kr/0005003804
(09년도 대비 9월 평가원 수리 가형 11번입니다. 문제에는 x,y로 조건이 써있는데, a,b로 수정했어요.)
요약
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
이때 f''(x)<=0임을 증명.
-----------------------------------------------------------------
조건
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
보기생략
일반적인 풀이
0<f(b)/b<f(a)/a이므로 '그려보면' 위로 볼록인 개형이 나온다. 따라서 위로 볼록으로 잘 그려서 삼각형 열심히 만들어서 풀면 됩니다.(보기나 뒤쪽 해설같은건 생략할게요. 논지에서 벗어나니)
물론 저렇게 풀면 답이 잘 나옵니다만, 수식으로만 유도해보고 싶은데 잘 안나오네요.
우선 a<b일 때 f(b)/b<f(a)/a이므로 (0,1)에서 f(x)/x는 감소함수입니다. 즉 (f(x)/x)'<=0이고, h(x)=xf'(x)-f(x)로 놓으면 h(x)<=0입니다.
f(0)=0에서 h(0)=0이므로 h(x)의 그래프는 원점을 지납니다.
이제 h(x)가 (0,1)에서 감소함수임을 보이면 h'(x)=xf''(x)<=0이 되고, x>0이므로 f''(x)<=0, 즉 위로 볼록임을 증명할 수 있습니다. 그런데 이게 진짜 잘 안나오네요. 식조작을 어찌하면 좋을까요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헬스터디 시즌2 0
3달 공부한게 건희 1년 공부한거랑 맞먹을 거 같아서 벌써부터 흥분된 미3누면 개추 ㅋㅋ
애초에 명제를 생각해낸 논리부터 고려하셔야 될 거 같아요. ' 00에서 0보다 클 때, f(a)/a>f(b)/b이면 f(x)는 위로 볼록이다'라는 명제를 수식으로 증명하려고 할 수 있지만, 역으로 반례를 찾으면 거짓이 됩니다. 아마 대강의 그림을 그려보시면 반례를 찾으실 수 있을 겁니다. 아니면 적당한 삼차함수를 잡으시고 기울기를 관찰하셔도 됩니다. 즉, 수식으로 참임을 증명할 수 없습니다.
조건이 af(b)/b뿐이라면 반례가 존재합니다. 그런데 실제 저 문제를 풀때 명시된 조건을 가지고 위로 볼록으로 판단해서 푸는 해설말고 다른 해설을 본적이 없어서 질문올린거에요 ㅎㅎ ㅠㅠㅠ물론 여기서 위로 볼록은 (0,1)에서의 위로볼록입니다.
저도 완전한 풀이 올리고 싶은데 수험생인지라 시간이 너무 오래 걸릴 거 같네요 ㅜㅜ(어려운 문제긴 해요 ㅋㅋ), 대신에 포카칩님이 쓰신 '수학영역의 비밀'이라는 책에 이문제에 대한 논리적인 풀이가 있습니다. 아마 해답지 말고 본문 속에 있을 거에요. 주변에 친구 책이나 아니면 서점 가셔서 한번 찾아보시길!!
오오 그렇군요 한번 찾아봐야겠네요 ㅇㅂㅇ
명시된 조건은
다항함수 f(x), f(0)=0 0