포만한 오프라인 직모A형 26번 문항 오류
게시글 주소: https://orbi.kr/0004998056

3번째줄에서
수정전 : 표준편차가 4인 정규분포를 따른다
수정후 :표준편차가 4였다.
이렇게 수정되어야 할 것으로 보입니다.
제품의 무게를 확률변수 X라고 할 때
확률변수 X~N(m,@^2) 인 정규분포를 따르면
모집단에서 추출한 확률표본 Xi 또한 N(m,@^2)을 따릅니다.
< 이때 표본의 개수가 n개일때 표본평균의 분포는 평균이 m이고 분산이 @^2/n인 정규분포를 따릅니다. >
X의 분포가 정규분포가 아니고 F라는 분포를 따르면 모집단에서 추출한 확률표본 Xi 역시 F라는 분포를 따르고 추출한 표본의 개수 n이라 할때 n이 크면
< 표본평균의 분포가 평균이 m이고 분산이 @^2/n 인 정규분포로 근사 할 수 있습니다. >
고교과정은 < > 이부분만 나옴
64개의 표본의 분포라 정규분포를 따른다고 서술한다면, 확률표본이 평균이 X_bar이고 표준편차가4인 모집단에서 추출한 확률표본으로 오해할 여지가 있습니다. (출제의도와도 멀어보이고, 이경우 모평균도 X_bar, 모표준편차도 4가됨)
단순히 64개의 평균과 표준편차가 주어지게 문제가 수정돠면 고교과정에서 배운대로 모표준편차를 모를때 표본표준편차를 이용하여 모평균의 신뢰구간을 구하는방법으로 답을 구하면 됩니다.
(정답에는 변화가 없습니다)
참고 : http://i.orbi.kr/0004985675
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금은 ㅈㄴ 표독하고 싸가지없는데 30대 중반 넘어가면 사람이 원래 표독해지나?...
-
풀어볼라는데
-
교육청 수학 또 2
아직 안 풀어봤는데 ㅈㄴ 맛있게 생겼네. 교육청 퀄리티들이 요즘 미쳐가지고 너무 좋네.
-
삼도극이 의외로 0
적네
-
제가 왜 재로 바꼈냐 ㅋㅋ
-
모란 vs도란
-
거리곱 욕할 필요가 없는 게 스킬이란 게 다 그런 거긴 함 1
일반화한 내용을 의식적으로 학습 이 과정에서 너무나 당연하게 느껴지는 것들도 있어서...
-
오늘 점심 육회바른연어 왔는데 육회 쫄면 존맛임 육빔이 최애 메뉴인데 오늘같이...
-
물리하면 비문학 4
물리지문 나오면 물리선택자 ㄹㅈㄷ개꿀임 16수능 돌림힘 지문 안보고도 문제 풀림...
-
님들 친구가 이런 적 있음? 진짜 친한 친구고 일단 사람 대할 때는 안 그런데...
-
하늘을나는것같다는데‼️‼️
-
옯서운 이야기 1
화장실에서 탁탁탁 소리남 씨발 괴담이 아니었다고
-
마지막 계산이 제일 어려운듯
-
1, 2든 상관없이 화학 선택한 학생들 혹시 비문학에 주제 화학이면 잘 푸나요? 꼭...
-
역학 개잘하는데 비역학 못하는경우 내가 그래서 물리 탈주 했는데
-
ㅈㄱㄴ 학기중엔 평일 안되고 방학중엔 평일로 해서 돈 좀 모으고 싶었는데 다들...
-
결승 또 티원일거 같긴 한데 일단 직행 ㅅㅅ 티원도 진짜 잘한다
-
ㅈ병신경기력 눈썩 풀꽉으로 겨우 결승가서 젠지한테 3대1로 지는거까지가 템플릿 이후...
-
ㅇㅇㅇ..
-
https://youtu.be/ovMiVcgozQc?si=ERr_hbNzh7GAEIb...
-
아오 이걸지냐 0
현준이들아..
-
도란씨 8
아니다
-
룰러 ㅈ되긴하네 3
징크스 캐리 ㄷㄷ
-
병신같은 팀 8
다 굴려놓고 미드에서 던지네
-
나 일침충인가 15
억울하노 퓨ㅠ
-
지금까지 간 곳
-
이번에는 5받을거같음….
-
과외생 요청으로 풀어봄
-
위험함요?
-
역시 사람은 운동을 해야돼
-
재밌어요
-
되게 익숙하다 했는데 구래역 근처였네
-
독서에서 도플러 식 미세 나오고 생명 돌연변이 전좌 결실 나오기
-
표지 졸귀 3
책왓음 히히
-
답 확인하는 글밖에 없어
-
스피드러너 모고 2
어려워요?? 띠부실 가지고 싶어서 샀는디..
-
흠
-
몸이 그냥 녹아내린다
-
26 나온 사람 없어요?ㅠ
-
7모 어지러운게 4
10번 20번 답 물어보고 있단건 어려운거 아님? ㅋㅋ 아 주말에 학원에서 풀어야되는데
-
답 뭔지 모름 0
영어나 준비하쇼 화이팅
-
1? 5?
-
ㅈㄱㄴ
-
24?
-
기묘한 오르비
-
확통 답 좀 0
처음부터 끝까지
-
이런씹
-
미적 29 답 0
16 맞나요?
이거 요지를 못잡아서 그런데 @/루트N 을 4라고 오해할수도 있다는 말인가요?
표본표준편차가 4인데,
이걸 모표준편차 4로 오해할수도 있다. 이런내용이에요
@/루트N 이건 표본평균의 표준편차~
노파심에서 댓글 하나만 쓸게요..
이거 틀리신분들 중에서 시그마/루트n=4라고 푸셔서 틀린분은 여기서 쓴 내용과 아무 상관 없어요.. 그냥 정규분포라는 말이 문제푸는데에 불필요해서 뺀거에요.
ㅋㅋㅋㅋㅋ시그마/루트n=4 라고풀면 개념오류
시그마/루트 n=4는 왜 틀린건가요?? 개념을 잘못알고있는건가요 ㅠㅠ
현역에게도희님이 적어준 식은 표본평균의 표준편차를 구하는식으로
(시그마/루트 n)
문제에서 주어진 4는, 표본평균의 표준편차가 아니라, 표본표준편차입니다.
이문제에서는 모표준편차를 구할수 있는 방법이 없으며
신뢰구간을 추정할 때 모표준편차대신 표본표준편차를 써야합니다.
이 문제 2013 수리나형이랑 거의비슷하지않았나요??? 이거 4를 루트64로 나누고 계산해야 하는거죠?ㅜ아직 안매겨서요ㅠ