[칼럼] 평면을 못 하니까 공간도 못 하지
게시글 주소: https://orbi.kr/00073772058
7월 모의고사를 앞두고 공간 기하 글을 여태 하나도 안 써서 써보는
20년 수능 27번
주관식 4점의 초입인 27번치고는
상당한 계산량으로 인해 당황했을 수 있습니다
상황이 복잡한 건 아닌데 말이죠
문제를 들어가기에 앞서
좌표 공간의 도형을 해석하는 데에 있어 가장 먼저 정립해야 하는 태도가 있습니다
바로
공간을 연속된 평면으로 보는 태도입니다
무슨 말이냐
먼저 기하에는 두 요소가 있습니다
'길이'와 '각'입니다
여기서 길이는 공간으로 가더라도 그 값을 구하는 것이 별로 어렵지 않습니다
지금까지 해왔던 대로 피타고라스의 정리를 응용하면 공식 딸깍으로 값을 구할 수 있기 때문이지요
그러면 각은 어떨까요
평면과 평면 사이의 각에 대해서는 기본적으로 두 평면이 무수히 많은 직선으로 구성되어 있기에
그 직선들 사이에서 무수히 많은 각을 생각할 수 있으므로 두 평면 사이의 각이 무엇인지부터 정의해야 합니다
이렇게 두 평면의 교점과 그 교점에 대해서 수직인 두 반직선 사이의 각을 두 평면 사이의 각이라고 새로 정의하죠
그러면 바로 직전에 교과서에서 언급되는 삼수선의 정리가 왜 등장했는지 감이 오실겁니다
저 세 수선 중 직선 l과 반직선 PH를 포함하는 평면은 평면의 결정 조건에 따라서 단 하나만 존재하고
그렇다면 그 평면과 바닥에 깔린 평면 alpha 사이의 각은
반직선 PH와 OH 사이의 각과 같다는 것을 알 수 있습니다
따라서 우리가 두 평면 사이의 각을 알기 위해서는 반드시 삼수선의 정리를 이용할 수밖에 없습니다
그런데 저 삼수선의 정리를 이용하면 두 평면의 각이 두 반직선 사이의 각과 같다고 했죠?
그러면 결국 두 평면 사이의 각은 두 반직선을 포함하는 평면에서 관찰한 두 반직선 사이의 각과 같네요?
이게 바로 공간을 평면으로 보는 관점 중 첫번째이고, 가장 기본적인 태도입니다
그러면 두번째 관점은 무어냐?
저 첫번째 관점에 따라 반직선 PH와 OH를 모두 포함하는 평면에서 보면 직선 l은 점으로 보일 것입니다
이렇게 공간을 평면으로 관찰하는 관점에서는 직선이 그대로 직선으로 보이거나, 점으로 보이게 됩니다
그렇다면 삼수선 정리의 상황에 대해서 점으로 볼 수 있는 또 다른 직선이 있지 않을까요?
PH와 OH는 두 반직선 사이의 각을 구해야 하므로 제외
그렇다면 PO를 점으로 보는 평면, 즉, 평면 alpha에서 공간의 상황을 관찰할 수 있을 것입니다
이 문제는 이 두번째 관점으로 접근해봅시다
AMN과 PAM 사이의 각이 제일 중요하니까
P에서 수선을 내리고 교선에 해당하는 AM에 그은 두 수선 사이의 각을 알아야 합니다
그렇다면 이때 P에서 내린 수선이 위의 삼수선 정리 그림에서 나온 PO에 해당할 거고
그러면 위의 화살표 방향에서 상황을 관찰하게 되겠죠
그러면 이 상황을
이렇게 볼 수 있겠네요
삼수선의 정리에 따라 그인 두 수선 PQ와 QH는 P가 원래 B였으니 자연스럽게 BQ와 HQ의 관계에 대응하고
그렇다면 두 평면 사이의 각의 cos 값은 AMN과 PAM이든 PAM과 AMN이든 관계가 없으니
AMN과 PAM 사이의 각의 cos 값은 PAM과 PAM의 정사영 사이의 비율과 같겠네요?
그럼 다음과 같은 논의를 전개할 수 있습니다
이렇게 공간의 문제를 평면의 문제로 치환하면
평면 기하의 실력에 따라 얼마든지 문제를 편하게 접근할 수 있습니다
결론)
평면을
못하는데
공간을 잘할리가
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구가 없는데 1
재수생인데 대학가면 친구생겨요? ㅠㅠㅠ 외로워 혼자 재수할라니 확실히 고딩때 친구들...
-
이 지문은 다시 볼 필요 없으려나....
-
그냥 문제 만드는거랑은 다른 느낌임 방향성 난이도등등 다 생각해가면서 해야함 앨범...
-
탕 농담이고 님들 매일 연락함? 아침에일어나서문자하고 자기전에 통화하고 막 그럼요?...
-
엽떡을 먹을 수만 있다면 오르비언들의 돈을 가져가도 좋아
-
자기만 살겠다고
-
東京大学 電子情報工学科
-
늙었네
-
요즘 노래중에 ㅇㅈ하는 몇안되는것중 하나
-
재수 어떻게 했는지 진짜 모르겠음
-
바나나 조아
-
어그로아님 광주 여자판사가 한남이 제일찌질하다 그러니까 한남충소리듣는거다 하는...
-
공통+미적분 준킬러 킬러 복(습)N제 공유 (feat. 7모) 13
안녕하세요 생투성애자입니다. 이제 수능도 중반을 넘어가는 시점이네요.. 다들 더운...
-
니 미소가 날 숨쉬게 해
-
연옥연옥 통일연세 연옥연옥 통일연세
-
헌혈 1회 -851기-
-
내 추천곡은 신해철-인생이란 이름의 꿈 처음 내가 작은 아기였을 때 엄마의 품에...
-
오공완 4
지로함까지 끝!! 내일부터는 삼각함수 ㅎㅎ
-
한바퀴 끝 2
쉬엇다가 두바퀴 가볼겨
-
나니키텐노? 1
릴리슈슈
-
국어 기출 2
국어 기출 5개년치 정도 들어 있는 문제집 추천해주세요.. 해설지 좋은걸루...
-
애기 후원좀
-
본가 30km 이내에 kfc가 없다.. 말이되냐고 못먹으니깐 더먹고싶다
-
백분위 밀려난다……
-
중2병이 늦게 온듯
-
오르비 과외시장 0
등록하면 과외 많이 잡히나요?
-
큰 거 온다 1
작을지도
-
대신 부족한건 뜯어내면됨
-
이라는 말이 있던데 정말 확 와닿앗음..
-
나 질문이 이씀 8
-
둘 다 들어보신 분 있을까요?? 유전 많이 까먹어서 처음부터 다시 한다는 느낌으로...
-
잘자요 1
오르비 마지막에 문닫고 나가기
-
한줄 요약: 국2 수3 사탐 초짜 뭐 해야될까요 작수 언미생지 22134 맞고 올해...
-
안녕하세요 고양외고 스페인어과 졸업 서강대 영문학부 휴학 (4학기 수료) 현재 나이...
-
제일 좋아하는 명언 12
공유해보고 싶었
-
와 드디어 12
으하하
-
저어는 국어 탐구만 칠게용
-
그거슨 오늘이 7모이기 때문이죠..
-
이러고 맨날 푹 삶긴 채로 학교 도착함
-
순수한 청년
-
인도네시아 형님들은 몸만들면 인정이다
-
학원 학생들이 잘 쳐야할텐데
-
오노추 3
-
잘 끝낼 수 있을까
-
왠지 사람이 없더라
-
7모 화이팅 5
-
여태까지 신경 안 썼는데 갑자기 개구려보임
공ㅋㅋ간

와 미친 공도 칼럼이다,,,사랑해요 선생님 잘 먹을게요..
캬
평면만 ㅈㄴ잘하능사람은 뭘까요..
공->평 전환이 부족한 것
그게맞긴함.. 근데 아무라봐도 수직이아닌거같이생겼는디 수직이라하는건 용납못하겠으~~~
지렷다.. 오랜만에 좋은 칼럼보고 가용~

귀한 기하 칼럼극킬러 시대의 끝을 알린 20수능
오늘 작년7모 30번 풀어보고 벽느꼈는데 (익숙하지 않은 시점에서 삼수선)잘 읽겠습니다
아까 다른글보고 잠깐풀어봤는데 비슷하네