[칼럼] 평면을 못 하니까 공간도 못 하지
게시글 주소: https://orbi.kr/00073772058
7월 모의고사를 앞두고 공간 기하 글을 여태 하나도 안 써서 써보는
20년 수능 27번
주관식 4점의 초입인 27번치고는
상당한 계산량으로 인해 당황했을 수 있습니다
상황이 복잡한 건 아닌데 말이죠
문제를 들어가기에 앞서
좌표 공간의 도형을 해석하는 데에 있어 가장 먼저 정립해야 하는 태도가 있습니다
바로
공간을 연속된 평면으로 보는 태도입니다
무슨 말이냐
먼저 기하에는 두 요소가 있습니다
'길이'와 '각'입니다
여기서 길이는 공간으로 가더라도 그 값을 구하는 것이 별로 어렵지 않습니다
지금까지 해왔던 대로 피타고라스의 정리를 응용하면 공식 딸깍으로 값을 구할 수 있기 때문이지요
그러면 각은 어떨까요
평면과 평면 사이의 각에 대해서는 기본적으로 두 평면이 무수히 많은 직선으로 구성되어 있기에
그 직선들 사이에서 무수히 많은 각을 생각할 수 있으므로 두 평면 사이의 각이 무엇인지부터 정의해야 합니다
이렇게 두 평면의 교점과 그 교점에 대해서 수직인 두 반직선 사이의 각을 두 평면 사이의 각이라고 새로 정의하죠
그러면 바로 직전에 교과서에서 언급되는 삼수선의 정리가 왜 등장했는지 감이 오실겁니다
저 세 수선 중 직선 l과 반직선 PH를 포함하는 평면은 평면의 결정 조건에 따라서 단 하나만 존재하고
그렇다면 그 평면과 바닥에 깔린 평면 alpha 사이의 각은
반직선 PH와 OH 사이의 각과 같다는 것을 알 수 있습니다
따라서 우리가 두 평면 사이의 각을 알기 위해서는 반드시 삼수선의 정리를 이용할 수밖에 없습니다
그런데 저 삼수선의 정리를 이용하면 두 평면의 각이 두 반직선 사이의 각과 같다고 했죠?
그러면 결국 두 평면 사이의 각은 두 반직선을 포함하는 평면에서 관찰한 두 반직선 사이의 각과 같네요?
이게 바로 공간을 평면으로 보는 관점 중 첫번째이고, 가장 기본적인 태도입니다
그러면 두번째 관점은 무어냐?
저 첫번째 관점에 따라 반직선 PH와 OH를 모두 포함하는 평면에서 보면 직선 l은 점으로 보일 것입니다
이렇게 공간을 평면으로 관찰하는 관점에서는 직선이 그대로 직선으로 보이거나, 점으로 보이게 됩니다
그렇다면 삼수선 정리의 상황에 대해서 점으로 볼 수 있는 또 다른 직선이 있지 않을까요?
PH와 OH는 두 반직선 사이의 각을 구해야 하므로 제외
그렇다면 PO를 점으로 보는 평면, 즉, 평면 alpha에서 공간의 상황을 관찰할 수 있을 것입니다
이 문제는 이 두번째 관점으로 접근해봅시다
AMN과 PAM 사이의 각이 제일 중요하니까
P에서 수선을 내리고 교선에 해당하는 AM에 그은 두 수선 사이의 각을 알아야 합니다
그렇다면 이때 P에서 내린 수선이 위의 삼수선 정리 그림에서 나온 PO에 해당할 거고
그러면 위의 화살표 방향에서 상황을 관찰하게 되겠죠
그러면 이 상황을
이렇게 볼 수 있겠네요
삼수선의 정리에 따라 그인 두 수선 PQ와 QH는 P가 원래 B였으니 자연스럽게 BQ와 HQ의 관계에 대응하고
그렇다면 두 평면 사이의 각의 cos 값은 AMN과 PAM이든 PAM과 AMN이든 관계가 없으니
AMN과 PAM 사이의 각의 cos 값은 PAM과 PAM의 정사영 사이의 비율과 같겠네요?
그럼 다음과 같은 논의를 전개할 수 있습니다
이렇게 공간의 문제를 평면의 문제로 치환하면
평면 기하의 실력에 따라 얼마든지 문제를 편하게 접근할 수 있습니다
결론)
평면을
못하는데
공간을 잘할리가
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영어 0
결국 수능완성 한챕터 풀었어 07 빈칸 4/5 덜읽고 답찍어서 하나 나감 분발하자
-
생윤공부 2
135선지중 12개틀렸음
-
오늘 쌤이 sec(x)를 실수로 sex로 판서하셧다가 급히 지우셧단말이지;; 진짜...
-
나도 무물.. 6
보 해줘잉
-
ㅈㄱㄴ ㅠㅠ
-
매월승리 0
2~8호 순서대로 푸는거보다 4~8호 다 풀고 2~3호 푸는게 낫겠죠?
-
하도 무서워보이길래 ㅌㅌ 했는데
-
24수능 때 수학,과탐을 매우 잘봤고 국어만 심각하게 망쳤습니다. 그냥 수능...
-
무슨 기적이였나 권용기 거였나
-
지들이 뭐라도 되는줄아는 영포티들이 희희덕 거리면서 일반인 조리돌림하고 선민의식...
-
무보 14
무엇이든 물어보삼
-
대체 어떤 약국임?? 진짜 궁금
-
전여친이 6
전여친이 양다리 + 환승으로 저랑 헤어졌단말여요 근데 얼마전에 하이라이트 보니까...
-
무물? 2
보
-
으알라ㅏ아으으ㅏ아능으ㅏㄹ
-
삼각함수에서 파생된(?) 또 다른 친구인가요? 아니면 삼각함수 미분한건가요?? 제가...
-
샌드위치 26
최고의 게이밍 푸드
-
얘 왜케 큼 1
ㄷㄷ
-
ㅇㅇ
-
마음이 평화로워져서 그런 듯 방학이랑 2학기 동안 열심히 해서 2학기 중간 본 후나...
-
오운완 2일차 3
완료
-
백날 저거 해봐야 개돼지 국민들 매일 1000명씩 죽으라고 저주하는 의대생들 한 트럭임
-
이거저거 다 궁금함..
-
체육대회 수학여행 학교축제 다 빠진 개찐따라 쓸게없음 ;;
-
자지 1
미
-
최적 선생님과 최여름 선생님 중에 누가 더 좋나요?
-
무물무물
-
나가ㅏㄱ가가가가
-
키도 크고 예쁜 후배라 궁금하긴 했었는데, 아마 제가 아는 과 선,후배 중에서는...
-
너무 쉬운거 같다...
-
이미지 써드림 20
모르면 패스할게요
-
나정상인같지 1
?
-
무물보 빌런 3
그게 나야 두비두밥 ^^
-
무물보 0
나도 못참지
-
뻘글이지만... 2
어렸을 때 현실 도피하기 위한 수단이 수학공부였습니다
-
무물보 0
나도 해줭
-
보지 6
마!
-
무물 3
-
무물보 9
-
무물보? 5
없겠지만 한번
-
무물 2
-
무물보 메타임? 10
ㄱㄱ
-
그냥 10 goat임 Ebs라는 고요한 바다에서 조용히 승천의 때를 기다리는 드래곤이랄까
-
저도 무물보 14
해주센여
-
무물보ㄱㄱ 49
심심해
-
나같은 애들 거르려고
-
한달 정도는 답지는 공개 안 하고 그 기간에 풀고 후기 남긴 사람 중에 선착순으로...
-
얼마나 유의미함?
-
유튜브에서 보다가 떠서 궁금해짐
공ㅋㅋ간
감사합니다

와 미친 공도 칼럼이다,,,사랑해요 선생님 잘 먹을게요..
참고로 25 수능 28번도 동일한 접근이 가능합니다
캬
평면만 ㅈㄴ잘하능사람은 뭘까요..
공->평 전환이 부족한 것
그게맞긴함.. 근데 아무라봐도 수직이아닌거같이생겼는디 수직이라하는건 용납못하겠으~~~
수직인데 본인이 수직이 아닌거 같다고 우기는겁니다…
지렷다.. 오랜만에 좋은 칼럼보고 가용~
앞으로도 도움되는 글 많이 써드리겠습니다

귀한 기하 칼럼기하러가 귀해서 칼럼도 귀한…
극킬러 시대의 끝을 알린 20수능
근데 1컷은 92 ww
오늘 작년7모 30번 풀어보고 벽느꼈는데 (익숙하지 않은 시점에서 삼수선)잘 읽겠습니다
삼수선만 잘 찾아도 8할은 푼겁니다
아까 다른글보고 잠깐풀어봤는데 비슷하네
훌륭하십니다
저는 안 보여서 이럴 때 쓰이는 발상 정리하여 일반화시켜 공식화 했습니다...
저보다도 훌륭하십니다