수학문제 하나만 물어볼게요;(수능완성 실전편 5회 29번)
게시글 주소: https://orbi.kr/0004731375
타원x^2+4y^2=4의 1사분면위에있는점 P에서 그은접선의 x절편,y절편을 각각 Q,R이라할때
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
학원 알바 하는데 고딩 셋이서 어느 대학 붙었냐는거임 그냥 이대랑 중대 붙었다고...
-
이거 왜 안되는지 설명좀??
-
아니 틀딱 기출 틀리는 ㅂㅅ이 어딨냐고 ㅋㅋㅋ 아 ㅋㅋㅋ 0
그것도 국어 틀딱기출 ㅋㅋㅋㅋ 그게 나네. 쪽팔리니까 진짜 정신 차려야겠다..
-
시대인재북스 d caf 말고 아는 게 없다
-
신라면 회사 아님??
-
12로 25분까지만 따라가고 더 이상 못 뛰겠뇨이 심지어 13 맞춰놓고 뛰심 GG선언
-
딱걸고 ㅇ..여보세요? 이것도 힘든데!
-
눈물)흙수저썰 2
어렸을때 태권브이랑 마징가제트를 좋아했는데 피규어같은 장난감은 비싸니까 A4용지에...
-
슬픈사실)기인쵸비는 원장롤의경험이있다..
-
추가합격받고 인증해야하는데 진짜 복잡한 사정으로 모바일 학생증이 내일에서야...
-
지금 공부가 중요하노???? 바로 유튜브켜서 lck 라이브 스트리밍봐라
-
오느른 4
오랜만에 축구 하는 날
-
초콜릿언제오지 0
당일발송이던데 너무늦지않게왔으면좋겠다 바로냉장고에넣을수있게..
-
기적 만들어보자
-
남들은 당연하게 하던거임.. 그게 문제 등급이 낮을수록 배울건 조ㅗㅗ오오오ㅗㅇ나나 마늠
-
ㅜㅜ
-
2세트 이길세트 였다고 아쉬워하니까 멘탈관리 바로 해주네
-
저랑 연락하실분 0
근데 저는 양락임..
-
수능이 존나 고였으니까 그러지 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
난 밥먹을 자격도 없는 쓸애기 같아서 이틀동안 밥도 안 먹었는데 오늘 친구만나서...
-
시발5꽉이네 0
젠지존나못하네 걍 져라 시발
-
일단 난이도는 여전히 쉬운 편은 아녔음. 몇먗 허를 찌르는 문항이 있었고 14번...
-
아니 젠지왜저래 9
왜 5꽉을가... 베테랑서폿의부재+감코진부재인가...
-
수학1 하시면 됩니다
-
아니.. 어찌 북극곰공.. 가죽만 오셨소..
-
ㅇㅈ?
-
어이가 없노 ㅋㅋㅋ
-
머함님들 6
ㄴㅇ
-
상남자식 반영비 7
수학 백분위 = 내 등수
-
평균 6등급인데 ( 생지 ) 인문계 가는 선택지가 없습니다 사탐런했다가 어떻게 될지 몰라서 무섭네요
-
수학 오답노트 0
수학 오답노트 어떻게 쓰는게 가장 효율적일까요? 노트에 문제를 다쓰면 너무...
-
10분정도 고민했는데 안보이면 바로 답지로 넘어가도되나요?
-
퇴근길 행복한 고민
-
원서 실패 2
저보다 점수 더 못받았는데 스나로 잘 간 사람들 볼때마다 원서질 실패라는 생각...
-
국어 영어 1-2등급 왔다갔다 하는 수준에서 한번 더 수능치는거면 지금 뭐해야할까요?? 0
수능은 국어2영어1이긴 한데 6평부터 실모까지 아슬아슬한 순간 연속이었고 뭔가...
-
"비율은 분수다" 이게 "현우진은 수학강사이다" "장원영은 여자아이돌이다"...
-
오늘 직관하는 사람들 진짜 개부럽다 ㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜ
-
경쟁률 빡세지 않나? 상대평가 등급 이런것도 아니고..붙는사람은 뭐임 ㄹㅇ
-
흡연하는여자 우떰 21
추구미는 카즈하임 객관적이든 주관적이든 말해주센 담배마려움
-
무슨일이지?
-
고3 인문논술 3
고3이고 6논술 쓸 예정인데 3월부터 준비하면 너무 이른가요? (학원이고 일요일...
-
브링이 사랑해 3
쪽♡
-
쭉쭉쭉쭉쭉
-
오천원주면서 오백개달랫더니 미친놈처럼봄;
-
어터케할카뇨
-
Px를 매일 가는 삶
-
뭔가 수1 수2 확통이랑 다르게 재밌는 기출이 많은 것 같음 사고의 깊이도...
-
수능 꽤 중요하게 준비해온 입장에서 1. 수능 끝나자마자 이별통보받기 vs 2....
산술기하 합이나 곱 일정할때 써야됨
그게 딱하나로 정해지지 않는경우도 있지 않나요; 산술기하 문제에서
변수가 존재하면 산술기하평균이 성립은 하지만 최대,최솟값은 구할 수 없어요
저 어쨋든간에 저둘이 같을때 최소가되는건 사실 아닌가요?
산술기하평균으로는 16/a^2+1/b^2≥8/ab 까지만 알 수 있고
ab가 일정하지 않기때문에 어떤 상수 이상이라는 것은 모른다는 말씀이시네요.
코시슈바르츠 부등식을 써보시면 어떨까요?
저 어쨋든간에 저둘이 같을때 최소가되는건 사실 아닌가요???
아니에요. 그건 마치 9≥8 이므로 9의 최솟값은 8이다 라고 말씀하시는 것과 유사하네요.
16/a^2+1/b^2 가 8/ab 를 최솟값으로 갖는다 ⇔ 6/a^2 = 1/b^2
이건 맞지만 종속적으로 변화하는 a, b에 의해 16/a^2+1/b^2가 8/ab를 최솟값으로 갖지 않을 수도 있습니다.
무슨뜻이죠;;; ㅜㅠ
여태까지 항상 합의꼴에서 둘다 양수라는 조건하에 최솟값을 곱으로 구해왔었는데; 이문제는 왜적용이 안되는건지 모르겠어요;
일단은 16/a^2 = 1/b^2 일때 최솟값인 8ab가 되는건 사실이잖아요; 근데 여기서 (a,b)가 타원위의점이란것에서 타원의식에 대입하면 a,b가 모두 구해지지 않나요?
그러니까음... a^2와b^2의 관계식이 정해져있으니까 사실상 a^2를 b^2로 나타낼수 있을테고 결국 b만의 단독식으로 유도 되서 8ab를 갖을수 있는거 아닌가요
음.. 그러니가 최솟값이 머든지간에 분명 어떤 a, b가 존재해서 ab/8 을 최솟값으로 가질 것이고, 그 때의 a, b는 16/a^2 = 1/b^2 를 만족한다.
라는 말씀이시잖아요?
그렇다면 아닙니다+_+....
ab가 일정하지 않기 때문에 최솟값이라는 ab/8 은 커지기도 작아지기도 하지요.
그런데 여기에 a^2+4b^2=4 라는 조건이 붙기때문에 ab/8 은 단 하나로 결정되고, 다른 a, b에서 그 결정된 값보다 작은 값이 나오기 때문에 안돼요.
실제로 산술기하평균에 의해 나온 값보다 더 작은 l^2 값이 존재하잖아요~
이번 평가원 6평 28번 문제에서 사용된 부등식의 논리와 동일한 논리입니다. 부등식으로 표현된다고 해서 해당 변수가 반드시 최솟값을 가지는것을 보장할수는 없습니다. 단지 크거나 같다는 사실만을 지칭할 뿐이죠
어떤 절대부등식 또는 일반 부등식에서도 한쪽이 상수가아니라면 그반대쪽의 최대최소를 이야기할수없음
무슨뜻이져 ㅠ 아...고1개념에빵꾸가있을줄이야
윗분들 말씀대로 이문제에선 산술기하는 성립하되 상수가 아니므로 그 등호성립일때가 최대최소가 아니라는거에요 왜냐면 그 상수가원래오는 식에 변수가왓으므로 그변수가지니는 또다른 최대최소가 잇을수 있고 그 럼 그 최대최소랑 등호성립일때 준식의 원하는값을 얻을수잇는거죠
저그렇게 따지면 8/ab 의 최솟값을 구하면 되는건가요?
8/ab가 변하긴 하지만 어쨋듯 8/ab가 a,b를 조합해서 만들수 있는 경우중 최소인것 아닌가요? 근데 8/ab가 되는경우 a,b의값은 하나로 정해지는데;;; 왜이런거죠;
그니깐여 에이가 상수보다 작거아깉으면 그상수가 최소죠 근데 식이라면 그 식의 범위가 다시 잇을테고 그럼 그 두부등식이 모두 등호가 성립해야 최소를 구할수 잇어요 더이상은 님몫
아니근데 위식이 8/ab가 되는 경우는 딱하나로 정해져있다니깐요;
그럼 그렇게 하세요..더이상의 대답은 시간낭비라는 생각이
모든상황에서 8/ab가 일정해야됨 님이 말하고 있는건 특정한 a와b에대해서 말하는거아님?
위에 수학상자님 말씀이 정확해요. 크거나 같다는걸 지칭만 할 뿐이지요. 반드시 등호가 성립하는 부분에서 최솟값을 갖는건 아닙니다. 그래서 최솟값을 구하는 문제에서는 8/ab가 일정해야만 하는거구요.
위 식에서 산술기하평균의 등호성립조건을 만족하는 (a,b)는 단하나뿐이겠지요. 1사분면에서 타원과 원점을 지나는 직선의 교점이니까요. 그걸가지고 '정해져있으니까 8/ab가 일정한거 아니냐'고 말씀하셔서는 곤란합니다. 그 점에서 최솟값을 갖지 않아요.
두뇌와 마음을 여시고 위의 댓글들을 여러번 읽어가며 생각해보시는게 좋을것 같습니다.