솔로깡님 질문 사진첨부 했습니다~
게시글 주소: https://orbi.kr/0004699137

댓글에서 극한값이 존재하므로 좌미분계수와 우미분계수의 값이 같다 이부분이 잘못되었다고 말씀해 주셨는데요
그런데 사진 첨부된것처럼 따라서 뒷부분: 미분계수값과 ㄱ과 ㄴ에서 좌미분계수와 우미분계수의 값이
같다. 이부분이 왜 어떻게 잘못되었는지 잘 이해가 안갑니다.
제 생각에는, 이부분 자체는 맞고,
도함수의 불연속을 따지려면 도함수 자체의 극한값과 도함수의 함숫값이 같아야한다. 이부분을 제가
뭔가 오해하는것 같습니다.
저는 우미분계수가 도함수의 우극한이라고 생각합니다. 이것이 잘못된 것인가요?
또한, 사진첨부에서 틀린 부분을 알려주심 감사하겠습니다.
----------사진이 잘 안보이는것같네요?;;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비록 그렇게 높은 대학은 아니지만 수험생활 하면서 오르비 도움 많이 받았습니다....
-
점심부대찌개 1
흐흐흐
-
이거 먹으러 용산 왔다면 믿을라나
-
다 디시하는줄 앎 네..
-
기출이었던거 같은데 어떤건지를 모르겠음
-
마닳+마덩텅만해도 충분할까요?
-
배고픈데 0
일어나는게 더 싫네
-
10주차부터 합류한다고 치면 장재원쌤 박종민쌤 9주차까지 vod를바로...
-
필요한 학과 서울대 정외 지균 인문 지균 역사교육 아동가족 윤리교육 연세대 문헌정보...
-
친목도 요즘 적당히 하고 최근들어서는 ㅇㅇㅂ도 없어서 클린함 그리고 입시나 수능쪽에...
-
넵.
-
맨시티 개썰렸네 1
32강떨 아으
-
작년에 수학에 많은 시간을 못 쏟아서 실전개념+기출한두번 풀고 백분위 83 나왔어요...
-
현실판 넷플릭스 ‘수리남’…국정원, 나이지리아서 국제마약총책 검거 1
현지 마약당국과 공조해 ‘K·제프’ 붙잡아 세계에 거점 두고 국내로 마약 반입 지속...
-
인강선생님이 예습 - 강의 - 복습 하라고 하시던데 예습에서 다 풀리면 강의 안봐도...
-
아님 다들 부모님이 내줌?
-
재수해고 얻은거 0
불어난 살 나빠진 건강 심해진 열등감 ㅠㅠ
-
첫 정답자 2000덕 드리겠습니다!
-
채무불이행 책임과 담보책임을 다루는 지문이 있는데 법무부가 입법예고한 민법...
-
그래도 애들은 꽤 착한편이라 생각함 찐따가 많아서 그렇지 (나도임)
-
화면에서만 보던 카나쟝.. 이젠 내 여자임..
-
시간대 하나놓쳐서 둘다 못들음 근데 둘다 필수임 ㅋㅋㅋㅋㅋ 인생 좃댐 ㅋㅋㅋㅋㅋㅋ
-
섬진강 줄기 따라 화개장터엔
-
100세 시대에 초고령화사횐데 맞죠??
-
콜라는 업소용~
-
감사합니다... 10
칼럼 조회수가 어느덧 5만을 넘겼군요 쪽지로 연락온거까지 열심히 상담해드렸습니다...
-
왜 이렇게 살고있을까
-
Day 4부터 빡세지던 기조가 유지 대부분 풀리긴 했지만 약간의 발상이 필요한...
-
얼굴매임 얼굴에 때리면 더 치명타임
-
시대 특별전형 0
지금 넣으면 대기접수인데 언제쯤 빠짐?
-
다보인다
-
아 1
에타에서 신원파악됨
-
현역 과탐 9
현역인 예비 고2입니다 일단 정시를 준비하고 있습니다 (이제 고2인데 수시챙겨라...
-
막판에 동홍으로 빠지면서 추합이 꽤돈것같네요
-
음지에있다는사실은 좀제외하고봣을때 남자분들이 저런몸매좋아하나요 인스타봣는데...
-
오늘은 뭐하지 12
-
그렇다
-
해줘요
-
솔직하게 고능아 인거임?
-
메가스터디 패스 쓰고있습니다. 김성은쌤 - 시작하는 불꽃 개념 수1부터 끝내려고...
-
투과목은..
-
물리1 특상 0
특상 문제 중에 우주선 내부에서 빛이 가로로 왕복할 때 우주선 내부와 외부의...
-
올해 경영학과 가게 돼서 1학기 때 전공이 ‘경영학원론, 경제학원론, 회계원리’라고...
-
6월 이전까지 개념+도표+마더텅+2회독때 기출강의 하나더+수특 여기까지 하면...
-
시골쥐상경 2
찍찍
-
"폭동이라니" 반발하자…이준석, 동덕여대 찾아 "폭도들 대단" 3
동덕여대 남녀 공학 전환에 반대하는 학생들의 시위를 '폭동'으로 규정한 이준석...
-
3월부터 학원에서 계정 어차피 줘서 필요없는데 그전까지 김범준 스불 딱 하나만...
-
N수생은 앰생인거같은데 고N력자는 오랜시간동안학문을연구한연금술학자같음
-
난이도가 메쟈의>인설의>>>>>연치>>중약 인게 참 웃김 영어 1을 받은 사탐러너는...
혹시 ctrl + 해도 안보이시면 댓글 달아주세요! 다시 찍어 올리겠슴다.
ebs 수능특강 : 도함수의 정의 - 일반적으로 함수 f(x)가 "정의역" X에서 미분가능하면 "정의역"에 속하는 모든 x에 대하여~
지정된 두 함수에서 정의역이 서로 다릅니다. 애초에 x=0에서 위의 식이 정의되지 않고, x=0일 떄, 함숫값은 0이다 라고 되어있습니다. 즉, f'(0)을 정의할 수가 없는데, 그걸 "있다고 가정하고" 생각을 했다는 것이 문제인 셈입니다.
잘못된 점은 "lim (xㅡ>0) x^2 sin (1/x) =0으로 존재" 부분입니다.
x=0에서 해당 함수가 정의되지 않았으므로 존재한다고 할 수 없습니다. f(x)=x^2 sin (1/x) 가 x=0에서 정의된 함수식이 아니므로, 미분계수 구하는 식에 저렇게 대입할 수도 없고요.
x=0일 때 함숫값이 0이라고 강제로 지정한다고 해서, x^2 sin (1/x)의 식을 미분계수의 정의에 대입해도 되는 것은 아닙니다. 애초에 x^2 sin (1/x)가 0에서 정의되지 않았으니까요.
f`(0)을 정의할 수 없다는것은 f`(0)을 구할 수 없다는 것과 같은 말이라고 생각해도 되나요?
그런데 식으로는 사실 구할수 있지 않습니까? 정의를 통해서..
위 식에서 함수 f도 사실 정의되어 있으니까요.
미분계수 구하는 식에 저렇게 대입할 수 없다는것은 좀 이해가 가지 않습니다.
이게 실력정석 연습문제 기본 10-3번인데요, 답지도 제가 써 놓은 풀이와 같습니다.(f`(0)을 구할 때 미분계수의 정의 이용->위 정의된 함수를 미분계수 식에 넣음)
말씀하신 지정된 두 함수라는 것은 x=0일떄와 x=0이 아닐때를 말씀하시는 것이지요?
문자들을 혼용하다 보니 쓰면서 혼동했네요.
g(x)=x^2 sin (1/x) 의 함수에 대한 g'(0)을 정의할 수가 없습니다. (제가 의도한 것은 f'(0)이 존재하지 않는다는 것이 아닙니다.) f'(0)=0으로 명백히 정의됩니다.
정석책이 지금 없어서 잘 모르겠지만, 도함수를 구하기 위해서는 미분을 해서, 도함수의 식을 도출하여 좌극한, 우극한을 나타내는 방식으로 해설했으리라 추측합니다.
아까 정신없었는데 이제 다시 보니 정리되네요.
일단, 원함수의 도함수가 존재한다는 것은 '좌미분계수와 우미분계수가 일치해야 한다'는 뜻이 확실합니다. 하지만 도함수가 x=a에서 연속이라는 것은 도함수의 우극한 값과 도함수의 좌극한값이 같다는 것이고요.
저 위 수식에서 잘못된 논리로 전개된 것은 좌미분계수와 우미분계수를 도함수의 우극한과 도함수의 좌극한으로 전제하고 논리를 이끌어나갔다는 점입니다.
이 둘은 서로 다른 별개의 개념입니다. 도함수의 정의, 미분계수의 정의로 해당 논리 '좌미분계수, 우미분계수의 국한은 도함수의 좌극한, 도함수의 우극한이다'는 것을 이끌어낼 수 없습니다.
그렇군요... 우미분계수와 도함수의 우극한을 동일시해서 틀린것이군요 알겠습니다
정말 감사합니다!
이와 관련해서 한 정리에 대한 링크 붙여넣겠습니다.
http://unolab.tistory.com/83
링크 내용을 요약하자면, 함수 f(x)가 미분가능하더라도, 그 함수의 도함수가 미분가능하다는 보장도,연속이라는 보장도 없습니다만, 중간값의 정리는 항상 적용할 수 있다는 것을 의미합니다.