도와주세요 저 바보 된 느낌...ㅜㅜㅜ
게시글 주소: https://orbi.kr/0004568845


아... 질문할 곳이 여기밖에 없네요
I의 정의가 자 볼펜으로 쓴 거고요 원을 적분하면 왜 분모가 64가 되죠??ㅡㅡ
삼십분째 보는데 이유를 몰겠음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구들 다 군대가서 휴가 나오면 쓸쓸하구먼..
-
도저히 못 먹겠는데...먹다가 느끼해서 절반만 먹고 신라면 레드로 입가심 중임..
-
왜 동아리 하나만 죽어라고 팠을까 사람 소개받을데도 없다... 대학가면 최대한 동아리는 많이 ㅜㅜ
-
생지 하다가 생명 사문으로 런했는데.. 사문 한번도 안해봐서용
-
저녁 치킨ㅇㅈ 6
양념은 역시 페리카나
-
선착1 5
탈릅기념 덕코 증정
-
https://orbi.kr/00072135873 몇 명 더 와줘 재밌당
-
고3이고 수학 빼고 노베 상태에서 정시 준비중입니다 미적 선택이고 수분감 하고있어요...
-
가보셨는데 좋았던 곳이나 식당 있으신가용?? 흐흐
-
나이 많아서 울어써
-
오르비 활동안한게 존다 다행이었노... 나같은 Wls은 헤어나올수가없다....
-
토플 도와주세요 0
저 지난해 토플 리딩 27, 리스닝 29인데 명색이 유학파라는 놈이 머리에 펑크...
-
ㅗㅜㅑ
-
근데 패스값 왜이렇게 올랐어요? 미리 결제 안했다가 20만원 더내게 생겼네 ;;
-
원래는 원자재 뉴스에 관심도 없었는데 kold사고 나서는 매주 천연가스 재고량...
-
심장을 바쳐라! 등가교환! 오라오라오라! 저 3개는 기출마냥 3회독해도 재밌을 듯
-
190621 6
오늘 내 세상은 무너졌다... 어째서 미분이...
-
흐흐 19
-
사실 그런건 없고 노른자 터진 계란은 있어
-
오르비과외시장 8
저기 얼굴박제되는거같은데 왜하는거임? pc버전에서 글보려고 내렸는데 모르는 얼굴...
-
특히 비극이 진짜 아름다운거임 ㄹㅇ
-
곱창 11
오늘은 완벽한 여장을 위해 화장도 꼼꼼히..
-
어제자 배치고사에서 제가 처음 보는 유형의 문제가 나와서 재밌을 거 같아...
-
맞팔구 2
-
큐가안잡혀 4
아오
-
아니해설지에서도이러면안되는거잖아
-
우리 그때갔던 그곳엔 이제 다른 누군가와 있어
-
맘처럼 잘 안되네 스스로 불안정해서 그런가 쩝…
-
쪽지로 많이 질문 주시는데 일일이 답변 못드려 죄송해요 저는 8년차 실수령액...
-
묘하게 매력도나 트렌디함이 저하되는 느낌.. 예외) 족발집
-
흠....
-
몇 번 풀어봤는데 답이 답지랑 다르게 나오네요
-
씻고 운동하고 또 씻어야하잖아 근데 가끔 운동하기 귀찮아서 씻지도 않고 운동도...
-
뉴런 본교재에 있는 문제는 나름 편하게 풀리는데 시냅스가 유독 뻑뻑해요..이거...
-
서강대 이화여대 숙명여대
-
아니 소름이 아니고 당연한게 아님이 아니고
-
도태남이 되엇구나
-
이해가안가네 진짜
-
난 여기사람들 프사 14
대체 무슨애닌지 하나도 모르겠다
-
피뎁 2
피뎁 프린트x,패스트x 이런데다 메일 보내서 제본받으면 잡혀가나요…다들 어디서 제본하는거?
-
이계도함수라고 ;)
-
5년 간의 경험을 바탕으로 최선의 결과를 도출해보게씀 취향 장르와 재밌게 본 웹툰,...
-
커뮤에서도 찐따되는거임 물론 오르비같은 고능커뮤는 제외
-
기출 지금 맞아도 아무 의미 없잖아 그냥 거기서 쓰인 발상을 공부하면 되는거지...
-
님들돈얼마나있음 6
??
-
생1 풀껀데 하나 추천좀다른 좋은 문제집 있으면 알려줘
-
흑흑흑흑흑흑흑흑 4
오르비 여러분들 안녕하세용
내가 이렇게 씹빠가였다니 서럽다ㅜㅜㅜ
제발 아무도 아는 사람이 없는 것인가..
회전관성 어느축으로 돌렸으냐에 따라다른데 님이 푼거는 x에대해 돌린거인듯
수직 축정리에의해 반타작 해야될듯요 Ix=Iy+Iz (대칭, Iz=Iy)
X에 대해 돌렸다는 게 무슨 의미인지 ㅜㅜ
원판을 돌리는 축이요 X축
Y축에 대해 돌리려면 계산을 어떻게 해야 하죠 방향만이라도 알려주세요 ㅜㅠㅜㅜㅜㅜㅜ
정확히 말하면 회전관성의 정의는
integral r^2 dm 인데 r이 회전축과 떨어진거리입니다.
그리고 dm은 미소질량인데 밀도를 1로보면 dA(미소면적)
dV(미소부피)랑 같죠
아!!!!!!!!!!!!!!!!!!!!!1
그러니까 z축에 대해 돌려야 하는 양을 가지고 x축으로 돌려서 계산한 거군요 제가..
moment of inertia of the cross sectional area w.r.t the z-axis 라고 써 있었는데 w.r.t가 뭔지 몰라 이해 못하고 있었음..
y축에 대해 돌리는 식은 정의상 Iy=integral z^2 dm 인데 적분이 귀찮고 까다로우므로
z축에 대해 돌리는식 Iz=integral y^2 dm 과 대칭이므로 같다를 이용하고 두개를 더하면
integral z^2+y^2 dm 인데 이건 x축으로 돌린다고 생각할때 z^2+y^2=r^2 이므로
Ix와 같습니다.
w.r.t는 with respect to 일거예요. z축에 대해서 겠네요
와 정말 감사합니다. dA = 2 pi y dy 가 아닌거네요. 정의상 dA를 만들 때 z축에 수직한 미소면적을 만들어야 했군요. 그리고 수직축 정리 설명도 감사합니다. 정말 감사감사감사감사 ㅜㅜㅜㅜㅜㅜㅜㅜㅜ
하.. 님 같이 똑똑한 사람 너무 부러워요 ㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜ 일반물리 그렇게 열심히 공부하고도 종이 한 장 차이로 적용을 난 못시키다니...... 엉어어어어엉
일반물리는 물리학의 여러분야를 수학적 베이스가 약한상태에서 훑는거라서 제대로 배우기 힘들어요
그때는 그냥 열심히 하되 자기분야 전공에서 쓰이는 물리분야는 전공때 배우는 역학이나 전자기학
같은거에서 배우는게 더 도움되요.