칼럼)수능 수학에서 문제 조건 해석
게시글 주소: https://orbi.kr/00042616465
*중2 당시 중등부 전국수학올림피아드 1차 금상 2차 은상
**경기 과학 고등학교 3차에서 떨어짐(나름 실적)
***고1,고2 당시(나이 기준) 2번의 수능 수학에서 만점(실제 수능 응시)
****고2 당시(나이 기준) 경희대 의예과 논술 최초합
-----------------------------------------------------------------------------------------------
[들어가기 앞서]
제가 다른 칼럼에서도 말씀 드렸다시피 수학황이 되기 위해서는 어느 정도의 수학적 감이 필요합니다. 여기서 수학적 감이 무엇인지에 대해서는 사람들마다 의견이 다 다르겠지만 저는 이 수학적 감이라는게 문제의 조건을 출제자의 의도대로 잘 해석하는 것이라 생각합니다.
특히 수능 수학에서 이 출제자의 의도를 파악하는게 더 중요하다 할 수 있습니다. 그 이유는 수능 수학은 순수 수학과는 거리가 먼 기형적인 시험이기 때문입니다. 여러분들이 대학을 가서 대학 수학을 경험하면 알겠지만 수학 자체는 난해하고 이질적인 부분을 엄밀하고 논리적인 증명과 해석을 바탕으로 그와 관련된 수학의 절대 진리를 파악하는 과목입니다. 다만 수능 수학에서는 이와 달리 출제자가 설계된 방향을 파악하고 답만 맞추면 되는 매우 편리한 형태의 시험지입니다.
위와 같은 이유로 수능 수학은 출제자의 의도가 더 잘 들어나는 편이고 그렇기 때문에 우리는 반드시 이 출제자의 의도를 읽는 연습을 해야만 합니다. 그럼 저희들은 어떤 방식으로 출제자의 의도를 파악할 수 있을까요? 당연한 말이지만 출제자의 의도는 문제의 발문을 통해서 파악할 수 있습니다. 정확히 말하자면 문제에서 주어진 조건을 통해서 우리들은 출제자들의 의도를 파악해야 됩니다.(단, 여기서 문제의 조건이라는 것은 넓은 의미로 문제의 발문에서 알려주는 정보라고 생각하면 됩니다.
[본론]
가령 f(x)함수가 전체 실수 집합에서 미분 가능하다라는 조건이 있다 칩시다. 그럼 우리가 이 문제의 조건에서 추출해야 될 부분은 f(x)가 연속함수라는 점과 미분가능하다는 점이죠. 그럼 이 f(x)의 미분 가능하다는 조건을 바탕으로 새로운 조건들과 연결하여 해석할 시 우리들은 문제를 해결할 수 있는거죠. 이런 식으로 출제자가 문제의 조건을 설정했을 때는 어느 정도 문제 풀이 방향을 제시한 거라 볼 수 있습니다.
좀 더 여러분들의 이해를 돕기 위해서 실제 제가 문제를 사고하는 과정을 보여드리도록 하겠습니다.
2022학년도 9평 수학 20번 문제입니다. 일단 제가 20번 문제를 봤을 때 가장 특이한 조건은 절대값 부호였습니다. 다른 조건 중에는 별로 특별한 게 없어서 저는 절대값 부호를 어떻게 해결해야 될지가 이 문제를 푸는 핵심이라고 생각했습니다.
그렇다면 출제자는 이 절대값 부호를 풀 수 있게 해주는 장치를 마련해 놓았을 겁니다. 그럼 먼저 절대값 부호안에 들어있는 식 중 f(X)에 대해 먼저 살펴보겠습니다. 놀랍게도 또 친절하게도 f(x)함수에 대해 온전하게 식을 주어줬네요. 그럼 끝났네요 결국은 f(x)+x함수식도 온전히 파악 가능하기 때문에 f(x)+x에 씌인 절대값 부호를 쉽게 풀 수 있겠네요. 그럼 뭐 쉬운 4점 짜리 문제랑 별반 달라질게 없게 되겠죠. 이 정도 문제는 문제의 조건만 보고 바로 출제자가 의도한 풀이 방향을 알 수 있는 문제입니다.
그럼 좀 더 난이도 있는 문제를 다뤄 보겠습니다. 아래 그림은 제가 이 문제를 풀면서 사고한 과정을 대충 끄적인 [대충 해설지]입니다.
2022학년도 수능 22번 입니다. 먼저 f(x)함수에 대한 조건 먼저 파악하면 대충 3가지 정도 파악할 수 있습니다.
1. 최고차항의 계수가 1/2인 삼차함수
2. (가)조건
3. (나)조건
그럼 나머지 조건들도 확인해봅시다. g(x)함수 자체를 살펴보면 f(x)함수에 의해 파생됐음을 알 수 있죠. 또 결국 문제에서 물어보고 있는 것은 f(5)의 값이므로 우리는 f(x)함수를 구하는 게 중요한 포인트일 것 같습니다. 그럼 일단 먼저 앞서 얘기했던 3가지 조건을 바탕으로 f(x)함수를 구해 봅시다.
먼저 (나)조건부터 파악하자면 g(f(1))=g(f(2))임을 알 수 있습니다. 여기서 출제자가 의도한 방향은 삼차함수 형태를 파악하라는 거겠죠. [대충 해설지]를 보면 알 수 있듯이 우리는 여기서 f(x)함수가 극점이 두 개인 삼차함수라는 걸 파악할 수 있습니다.
그 다음 (가)조건을 봅시다. 우리는 (가)조건의 출제자의 의도를 파악한다면 이 조건은 두 극값의 x좌표가 떨어진 거리를 구하는 데에 사용됨을 알 수 있습니다. 결국은 [대충 해설지]에서 보시는 것과 같이 두 극점이 떨어진 거리는 2가 됩니다.
다음으로 [대충 해설지]와 같이 남은 조건들을 대충 비벼보면 우리는 f(x)함수를 완벽히 구할 수 있는 겁니다. 그럼 f(5)값도 구할 수 있겠죠.
[결론]
문제의 조건을 파악하고 출제자의 의도대로 파악하는 연습이 중요하다.
다음 칼럼 주제는 기출을 통해 출제자의 의도를 파악하는 연습을 하는 방법이 될 것 같습니다.
-----------------------------------------------------------------------------------------------
*혹시라도 저로 인해 피해를 입으신 부분이 있거나 제가 경솔한 행동을 했다면 쪽지로 알려주시길 바라겠습니다. 최대한 빠르게 피드백 하여 사과할 부분은 사과하고 개선할 점은 개선해 나가도록 하겠습니다.
**댓글로 제 학습법에 대한 반박은 언제나 환영합니다. 저도 아직 부족한 그저 일개 학생이라는 점은 누구보다 크게 자각하고 있습니다. 부족한 부분을 고치고 채워나가는 칼럼러가 되겠습니다.
***이 칼럼은 여러분의 학습에 조금이라도 도움이 됐으면 좋겠다는 의도로 만들어진 칼럼이다. 일절 기만의 의도가 없음을 여러분들께 전달 드리고 싶습니다.
****한글 맞춤법을 잘 모르는 사람입니다. 그래서 오타 부분이 많을 수 있다는 점 미리 사과드리겠습니다. 쪽지나 댓글로 오타 지적시 최대한 빠르게 수정하겠습니다.
0 XDK (+20,600)
-
20,000
-
500
-
100
-
D-230 0
수학 -복습 원순열 오답노트,중복순열,같은 것이 있는 순열 안풀리는 문제는 더럽게...
-
얼버기 16
-
얼버기 1
부지런행
-
국어: 문학 2개 틀, 화작 1개 틀 보통 독서->화작->문학 순으로 풀어나가는데...
-
꿈일기 3
1. 선착장? 같은 곳이었는데 어떤 아주머니의 말씀을 들으면서 걷고 있었음 이...
-
문이유 본교재 2회독 피드백 끝냄 딱히 모르는건 없는거 같아서 기출 따로 풀지 n제...
-
금요일이라 다행이다.
-
한양대는 있던데
-
이감만 주구장창 3등급 나오는거면 내가 이상한거임? 이감이 이상한거임? 이감 외...
-
시발자고싶어요 0
일이안끝나요
-
다 탈주하셧나요….?
-
귀차니즘 아오
-
강k 11 4
73분 96(30번) 이 회차는 근데 좀 뭐지.. 유독 엉성하게 느껴지는 문제가 많은 느낌
-
에휴이
-
수리 논술이 좀 달라 보인다 물론 대학 수식은 못 쓰지만 뭐랄까 역설계 모형 보는 기분임
-
국어는 하하 0
풀면 썰릴 거 같아서 나중에 해야지
-
인생좆됐네 2
왜 못잔건데 왜
-
학교에서는 오르비하기가 힘들더라구요
-
쉬웠어요? 진짜요?
-
눈치같은것도 빠르고 변화나 핵심도 잘 캐치하고 그런게 일반적으론 공부나 이것저것...
-
가사가 깊어요
-
21 28틀 92점인데 작년 수능 기분이었음 1번부터 20번 휘리릭 풀고 21번...
-
먼 수능이여
-
이건 신세계야
-
웹르비는 신이야 9
-
빗소리 틀으니까 두통이 사라짐
-
이거 재호햄이 간 학과 아닌가
-
일단 전체적으로 현역때 현장에서 쳤던 거랑은 차원이 다르게 쉽다 느낌. 현장감...
-
입시에 미련이 남아있다는 신호일까요… 물론 작수 성적표는 쳐다보기도 싫네요 요즘...
-
난도미치니 마욧테모
-
너는 몇 개의 gpu로 이루어져 있어? 질문이 불분명하면 알아서 잘 대답해...
-
3모 수학후기 6
ㄹㅇ 간단함 13번까지 무난 14 공통접선 그냥 생각남 왜지 운이 좋음 15...
-
내신볼 때 어느정도죠
-
2025년 고3 3모 국어 손풀이(잘 푼 것 X / 저장용) 10
옯스타에 올리기에는 인스타 특성상 사진이 잘려서 그냥 여기로 올려놓습니다 글도...
-
조졌다 0
진짜×1557 자러감
-
쉬웠다는 거잖아
-
고3 3모 확통 72점 맞은거면 잘 본거 맞지…? 쌤이랑 상담하는데 확통이면 점수...
-
이제 진짜 잔다 0
지금 안 자면 ㅈ된다
-
가능함?? 참고로 내신 챙길거라서 수능공부는 한 7월후반부터 제대로 달릴거 같은데
-
궁금하균 근데 10번문제는 대체 뭔가요 갑자기 틱택토를 시키던데 ㅋㅋㅋ
-
나랑 얘기 좀 해
-
역시 고1 3월 교욱청 모의고사만큼 중학수학 실력 느는 것도 많이 없어요...
-
3모 문학은 6
풀때 체감은 개어려웠는데 운좋게 33번 하나빼곤 다 맞음 근데 좀 이상하던데...
-
자퇴를 작년 11월달에 해서.. 올해 8월에 보는 2차 검정고시 봅니다 아직...
-
국어 잘하시는분들 10
3모 혈액지문 같은거 어케푸심? 도저히 머리에 안들어오던데
-
2시다 1
자자
-
생기부 징계 6
생기부에 징계 내역 없으면 정시 지원때 괜찮은건가요? 같은 학교 애랑 싸워서...
이게 맞지 !
7ㅐ추를 벅벅ㅂ
도움 많이 되었어요 고마워요!!
감사합니다ㅎㅎ
고2 경희대의대 논술ㄷㄷ 머리가 남다르시네요
사실 국어 성적을 보면 딱히 머리가 좋은 것 같지도 않습니다
이러면서 국어 98퍼 이러면 곤란해요
5평가원 연속 2등급입니다
그래도 경희대 의대면ㅜㅜ 앞으로도 칼럼 자주 올려주세요

네 최대한 자주 올리겠습니다잘봤어용