9평 수학 후기(칼럼?)
게시글 주소: https://orbi.kr/00039317224
안녕하세요. 할 짓 없어서 개강하고 허구한 날 9평 풀어봤습니다.
다 풀진 않고 몇 문제만 풀었는데 상당히 재밌는 문제가 많아가지고 좀 얘기해보고 싶었습니다.
10번은 물론 a, b에 대한 식으로 다 표현하면 풀리긴 하는데, 저는 이렇게 풀었습니다.
-> 기울기는 y축 변화량/x축 변화량
-> 점 B의 x좌표는 점 A의 x좌표의 5배
-> 그러므로, 직선 OA의 기울기는 직선 OB의 기울기의 5배
-> m이랑 5m이랑 곱해서 5/4 나올려면 m=1/2
-> 그러므로 직선 OA의 기울기는 5/2
제가 말을 이렇게 장황하게 써놔서 그렇지, 기울기의 정의에 대해서 조금만 생각해보고, 이러한 사고가 익숙하다면 눈으로 풀수도 있습니다. 이후는 계산 잘하시면 됩니다.
11번은 참 문제가 좋은 것 같습니다. 다른 분이 써놓으신 것 같은데 f(1)의 값과 저 적분값이 같다는 조건을 왜 줬을까. '모든 걸 다 구하고 미지수가 하나만 남아서 저걸로 그 미지수를 구하라는걸까?'의 풀이 방식 역시 가능합니다만, 주어진 식 꼴을 보면, 1부터 x까지 적분한 꼴이 있으니, 0이랑 1대입해보시면 a값이 나오네요. 그 이후는 미분하고 계산입니다. 결론적으로, 적분식이 있는 조건에서 숫자를 대입하면 필연적으로 적분값이 들어간 식이 나올텐데, 그거를 함숫값으로 바꿀 수 있다고 조건을 주니, 이건 이쪽부터 건드리는 게 맞다는겁니다.
물론 결과론적인 해석이긴합니다만, 이런 생각을 가지고 저는 풀었습니다.
12번은 원에 내접하는 사각형의 두 대각의 합이 pi라는 거 가지고 푸는 거였죠. 사실 사인 법칙이랑 코사인 법칙 문제들은 중학도형이 key인 경우가 많습니다. 닮음, 합동, 원주각-중심각, 내접사각형의 두 대각의 합, 접현각 등등. 각각의 개념들을 nC2, nC3으로 섞으면 새로운 문제가 되는 것이고, 특히 접현각 관련해서는 많이 안나온 것 같더라고요.
14번은 극값 위치 다 알려주고, 최고차항 계수까지 다 알려줘서 f(0) 값만 결정되면 f가 결정되는 꼴이였죠. 그래서 p라는 새로운 미지수를 등장시켜서 ㄱ,ㄴ,ㄷ 문제를 만들었는데, 적당히 잘 낸 것 같습니다.
15번 수열 문제는 케이스 나누고 하면 되서 패스(사실 제가 수열 문제를 별로 좋아하진 않아서...ㅎ;;)
19번은 평균값 정리
20번은 저 같은 경우에는 g(x)=f(x)+|f(x)+x|-6x라는 새로운 함수 잡고 풀긴 했습니다만, 다른 쉬운 방법도 있었을 것 같기도 하네요.
21번은 역함수 평행이동이 키 포인트인 것 같습니다. 순진하게 역함수 관계인 두 함수를 줄거라는 생각은 갖지 않으시는게 좋을겁니다. 너무 쉽자나요 그럼?
22번은 진짜 정말 잘 낸 문제 같습니다. 먼저 lim 있는 쪽의 함수를 해석하고, 그 함수가 f(x)의 부호에 따라 바뀐다는 사실을 알아낸후, 또 g(x)의 연속성을 위해서 f(x)의 부호가 바뀔 때 f(x-3)=0이여야한다는 사실이 중요합니다. 이걸로 개형이 하나로 좁혀집니다. 사실 말로 이렇게 해서 쉬워보이는 거지, 직접 시험장에서 풀었으면 어려웠을 것 같네요.
문제적 측면에서 보면, 함수 g하나 주고, 이 함수가 연속이라는 점에서만 바로 함수 f가 결정된다는 사실이 정말 잘 낸 문제 같습니다. 짧은 문장 속에서도 여러 정보를 얻을 수 있다는 점이 중요하고, 이 것들을 얼마나 잘 캐치하느냐가 '수능' 수학을 잘하는 걸 판가름냅니다. (나) 조건은 그냥 계산이였고요.
항상 문제를 보고, 출제자가 멀 생각하면서 냈을까, 왜 이럴까 라는 거에 대해서 생각해봐야 하고, 이 문제를 어떻게 하면 더 변형시킬 수 있는지에 대해 봐야 한다고 저는 생각합니다.
이 경우에는 f가 3차 함수가 아니라면, 만약에 4차 함수라면 어땟을까 정도에 대해 생각해보는 건 좋은 연습일 것 같습니다. 가장 왼쪽 근이 중근이여야한다는 조건 정도 뽑을 수 있을 것 같네요. 물론 개형이 결정되지는 않습니다 ㅎ
또, f(x-3)이 아니라 f'이나 적분형태를 주었다면 정도에 대해서도 생각해보세요. 이런거랑 다른문제랑 섞어서 내면 또 느낌이 다른 문제가 되고 또 어려워 할 겁니다.
미적선택보면
28번 잘 낸 것 같습니다. AOB각이 90도니까 원주각으로 APB 각도 pi/4여야 한다는 사실 뽑아내면, 각 돌려서 Q에서 PB에 내린 수선이 y축이랑 이루는 각이 theta임을 알 수 있습니다.
29번은 계산이고
30번도 계산이네요. 주어진 (가) 조건에서 f(0)=0이고 일차항의 계수가 1/pi여야된다는 점만 뽑으면 훌륭합니다.
전체적으로 어려웠을 것 같지만, 수험생 입장이 아닌지라 재밌게 느꼈던 것 같습니다.
다들 9평때 실수하시고 모르시던거 보완해서 수능 때 건승하시길 빌겠습니다.
혹시라도 틀린 점 있으면 알려주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나 그림 좀 침 0
근데그림체가좀여성향임
-
현강 모자 0
아니 맨날 머리 감는데 걍 앞머리땜에 거슬리기도 하고 아는 애들도 많아서 신경...
-
윤통시펌
-
둘만 맞팔 풀려있음 딱 서로 둘만
-
방법도 같이
-
고소는 저분이대신해주겟지
-
서류떼오느라고 한시간 걸었는데 막상 서류떼오니까 기관 점심시간…… ㅅㅂ 한시간동안 기다려야하네
-
주식1500만원 달성 15
물론 -1500만원 ㅅㅂ
-
어케 함?
-
Look at me! 느낌으로
-
계엄 이후로 의사 편을 들더니 요즘엔 한까가 되어있음 그 다음엔 누굴 깔라나 약사...
-
수염 안자라는 약물없나 11
진짜 하루만 안깎아도 아재가 되네
-
조교분들 진짜 친절하신듯
-
@jxoooxe
-
어째선가 한 4명정도가 도망감 올린지 15분째인데 답이없다 뭐뭐뭣
-
“홍장원 메모 가필은 박선원 필체” 추정 보도에…與 “사실이면 내란” 朴 “만난 적도 없다” 1
윤석열 대통령의 탄핵심판 최종변론이 25일 오후 2시에 헌법재판소에서 예정된 가운데...
-
친구 만나셨음? 부담스러워서 얘기하기 싫고 대충 대학 다니거나 휴학했다고 둘러대면 되려나
-
과외잡는팁있나요 3
김과외 제안서 살포중인데 다 읽씹함.. 상위랭킹인 사람들 소개서 따라해서 써볼까요
-
감사합니다.
-
현역이고 중3 후반부터 다니던 수학학원이 있는데요 수학 공부를 거의 아예...
-
여왕벌 새끼 등장 18
-
저한테 투자하는거 나쁘지 않음 ㅎㅎ
-
어떰요
-
빌넣 성공하면 0
그럭저럭 다닐만은 한데빌넣 실패하면 개같이 3년동안 1학년
-
지금 중국,인도,호주에 투자하는거 나쁘지 않음
-
사실 남친이어도 상관없음
-
점심 ㅇㅈ 4
-
새터 도착시간 오르비언들아 집결하자 ~
-
연대에서도 이게 되다니
-
“韓, 반도체 핵심기술 5개 모두 中에 따라잡혔다” 7
반도체 분야 핵심 기술 역량에서 한국이 2년 만에 중국에 추월당했다는 평가가...
-
다 보입니다 크크 ㅌㅈㅇㄹ
-
제 미래 6
-
내 남친은 6
나랑 같이 비엘 보고 토론해줘야 함 물론 소장권 내가 사줌
-
휴학계 제출하기 8
으흐흐 재수 슈우우우웃 하기
-
대화를 하면 그 내용보다도 그 사람과의 관계를 신경쓰면서 말해서 실속이 없어 ㅋㅋ...
-
집 가는 버스속 질받! 37
1박 3일의 새터 즐기고 드디어 집 가용
-
똥먹기 6
미소녀 똥 우걱우걱
-
5 4
4
-
서울에있는 유명한 시대인재같은 곳에나 투과목 자료널렸지 재종안다니면 그런 자료자체를...
-
옹 4
지금 일어낫다 벌써 정오네ㅋㅋㅋㅋ
-
하나로 베고, 다른 하나로 봉인하리.
-
본인 지금 6
다 모여있는 강의실에서 오르비하는중 ㅋㅋ
-
조려대 공대의 희망..'안암,서울 수준의 교육' '세종공동캠퍼스' 0
5년이내 완공예정인 대덕 ㅡ 세종특별연구단지 연계 캠퍼스 입주하는 대학으로는 세종...
-
이건 사서 써야지
-
어느새 49만원 ㄷㄷ
-
싸움 4
-
그럴 시간에 수능을 치러 가시던지 의료계를 나가서 다른 일 찾아보시던지 질거라고...
-
ㅅㅅ 단체복 8
숭실숭실~
-
헉 0
헉
첫번째 댓글의 주인공이 되어보세요.