해모 후기에 이은 포모후기 B형
게시글 주소: https://orbi.kr/0003894421
하.. 92점. 16범 산수실수와 30번 산수실수..r값이다르게나왔네요..
5번. 하 정말 귀찮았다. 합과 곱을 알면 차도 알 수 있으니 사인a 코사인a 사인b코사인b를 다 구해서 공식썻다. 다른방법은 못찾았네요 ㅠ
16번. 여사건으로 풀었다. 135 홀수와 246짝수.
1 - (홀수3번 2 한번) - (홀수3번 6한번) - (홀수4번)
18번. 계산 정말 더러워 보여서.
먼저 PQ를 a로 두고 S1을 a로 나타낸뒤 QRC각 60-45도로 탄젠트공식써서 루트2분의 a인 QR을 구해서 초항을 잡아서 풀엇다.
19번. 해모에 나왓던거랑 똑같은문제네.
두식의 연립방정식의 근을 구하고고
그 두근을 구간으로 적분한 값의 차이값의 절댓값.
20번. 표 밑에 g(x)의 부호를 표시하니 보인다.
아 그리고. 분모=0이 되는 값은 무연근.
21번 AC를 잇고 원의 중심과 접점 이으면.
AC의 길이가 세타와 원의 반지름으로 표시됨.
반지름으로 정리!
27번. 점P를 각 평면에 정사영하고 그 정사영점으로부터 각각 삼각형 OAB OAC OBC로의 거리를 구해서 피타고라스 쓰면 XY평면에서의 거리가 최소가 나온다.
28번. 찍어서 맞춘 친구들도 꽤 있더라고요. 근데 규칙을 찾아야 합니다.
a9=-1이고 a10에서 k-1이 된다.
K-1에서 1을 k번 빼면 다시 -1이 된다.
그렇다면 여기서 한번 더 가면 다시 k-1이 된다.
즉 a10항 이후부터는 k값이 순환을 결정한다.
그 순환값은 위에서 볼 수 있듯 k+1이다.
a16 = a23이려면.
16+(k+1) = 23이다. 즉 k=6
29번. 처음에 아무생각없이 넓이 있으니 넓이비로 이면각을 쓰려햇으나. 어디가 고정점인지모르것다
그리고 좀더 생각해보니 기출문제변형이 보이더라
F점에서 DA에 수선의 발X를 내리면 그 길이가 정삼각형의 AQ의 길이이다. 마찬가지로 D점에서 EP에수선의 발Y를 내려도 그 길이는 같다.
즉 각DFX와 각EDY의 크기는 같다. 그 두각을 세타라하면. 정삼각형 한 변의 길이는 Cos세타이며
(점F에서 EP에 내린 수선의 발Z)
EZ의 길이는 2Sin세타이다.
그러므로 FZ는 루트(2-4SIN제곱세타)이다.
정삼각형을 이용. 사인세타값과 코사인세타값이 나온다.
BQ*CE=BQ*(1/2)AQ이므로
(1+루트6/3)×(루트6/6)이다.
30번. 제일 핫했던 문제라고 생각되네요.
원점에서 t,f(t)까지의 거리를 k(t)라 하면
G(t)=ㅣk(t)-rㅣ 이다.
에 식을 변형해서 정리하면
f(t)=+-루트(r제곱-t제곱)이다.
즉 f(x)와 중심이 원점이고 반지름이 r인 원과의 교점이 근이 된다.
위 g(t)의 식을 보면 저 두 교점에서 미분불가능 하다는 것을 알 수 있다.
하지만 k(t)자체가 미분불가능한점이있다. 그 점은 원점이다. 즉 미분불가능점이 3개가 나오는 것이다. 문제 상황에서 미분불가능 점은 두점이라 했으므로 f(x)와 중심이 원점이고 반지름r인 원은 한점에서 만나고 한점에서 접해야 한다.
계산 결과 a제곱=8
이를 이용해서 r제곱을 구하면 27/4가 나와야하는데 왜 난 계산실수를 했을까 젠장할.
30번은 이해안가면 그냥 버리고 다른 문제 푸는게 도움이 될 것 같다.
결론. 전체적으로 계산이 복잡했다.
아마 수리영역->수학영역 으로 바뀌어 수능에서계산능력을 요구하지 않을까하는 감자칩님의 생각이 담긴듯하다.
난이도는 포카칩모의고사보다 어려운듯!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
?
-
난 제주의다.
-
넓은 관점에서 보았을 때 크게 가치가 없어보임 국토가 다이나믹하게 넓으면 모를까.....
-
여기서 '태(苔)'는 이끼를 뜻하는 한자이고 이사부의 '異斯(이사)'와 대응됨....
-
재종 조언 ㅠㅠ 0
국수영사문물리 33144 지금 독재하다 벽을 느껴서 재종 급하게 찾는중인데 어느정도...
-
고기대해산물은 2
압도적이네
-
설레구만
-
수학포기하지말껄 14
그때 했으면 지금 얼마나 잘했을까 뼈저리게 후회하는중
-
이젠 곁에 없지만 아직 잊지 못하고~ 너를 잊지 못하고오
-
고능아가 된 기분입니다.
-
2등급인 학생을 찢어버리려고 만든 엔제같은데
-
반수생 사탐런 0
작수 생지 33 나왔습니다 생명은 그래도 자신있었는데 평소에 풀면 잘 풀리다가도...
-
옯만추하고싶어요 11
우리 단체로 줌 켤까?
-
으아악!!!! 0
내 동 아파트에서 시립대 과잠이~~~~!!! 숨겨왔던 열등감이 으악!!!!
-
이제야 평가원이 너무 학술적인 독서를 안내면서도 컷은 90초~80후반으로 맞추는...
-
시발@점 끝냈는데 개념이 좀 부족해서 한번 더 돌릴려는데5월시작늦을까요? 목표는 2등급입니다 ㅠㅠ
-
난 맞말이라고 생각하는데 뭐라하는 사람도 좀 있는거보니까 약간 큰일났을지도..
-
좃댓네 1
하
-
나 어렸을때 테스트 봤었는데 두개인가 풀었었음 ㅋㅋ
-
얼마 전부터 계획을 세우고 숙소잡고 해야하나요? 5월말쯤 갈거같고 인원은 10명정도 될거같습니다
-
토막글귀2 0
-
사인비 변비 또는 비율 원생성 원 2개 보조선 각 세타 설정 식 2개 연립...
-
안녕하세요. 한방국어 조은우입니다. 최근에 지속적으로 할 수 있는 컨텐츠를 개발하고...
-
[속보] 법원, 뉴진스 이의신청 기각...'독자활동 금지' 유지 3
걸 그룹 뉴진스 다섯 멤버들이 법원의 독자적 활동 금지 판정에 불복해 낸 이의신청이...
-
과잠구경ON 어쩌다보니 저도 인천대입구역까지 와서 카공하고있대요
-
도움이 안된건 아니지만 한국 뜰거 아니면 차라리 수학하는 편이 나았을듯
-
.
-
2025학년도 동국대 입시결과(수시, 정시_약대 포함) 0
2025학년도 동국대 입시결과(수시, 정시_약.. : 네이버블로그
-
토막 글귀 0
-
탈한은 지능순 1
한자 외울거 ㅈㄴ많네 아오;;;;;;;;;;;
-
이제 지긋지긋한 진상규명소리 안듣겠구나 희생자분들 성불하십쇼
-
지금 영어 절평인데 영어로 저러고있는거냐...
-
아오 ㅋㅋ
-
1. 모든것->(메뚜기 or 비메뚜기) 대우명제 2. (메뚜기 and...
-
삼각형보이기만 하면 문제집 찢어버리고 싶음 아 어지러워
-
증원 취소되면 1
지역 3개에 치대 학종 하나 약대 학종 하나 이렇게 써야할듯 이주호 하 ㅋㅋ
-
이재명 공부법 3
마음에 안 드는 과목은 전부 다 드럼통에 집어넣는 방법
-
좀 위안된다
-
맞는 말이다. 내가 할 수 없고 하기 싫은 걸 남한테 시키면 안 되지. 나는 그동안...
-
아니 뭘 만든 거야 이양반아
-
15 22는 원래 거의 유기해서 모르겠고 나머지는 미적을 써본적이없음..수2풀이...
-
룸메 썰.txt 4
”서울대 의대면 카이스트 정도 되는가?“ 진짜 모르더라구요 ㅋㅋㅎㅋㅎ 상위권 공대는...
-
ㄹㅇ
-
도형 문제에서 막히다니 10
이건 기하러의 수치야
-
학교 애들주에 가톨릭대 의대가 듣보 의대라는 새끼도 있네...
-
작년 이맘때엔 공군 붙었다고 좋아했었는데 ㅋㅋㅋㅋㅋ 내년 이맘때엔 집에서 케이크...
-
슈벌;;
등급컷이 낮은이유는 계산이길어서 시간이모자라서인가요?
중간중간 당황하게끔 하는 문제 +. 28.29.30번은 생각을 요구하는문제때문 아닐까요?
수능이였다면.
29.30을 버리고 1~2문제 실수로 더 틀렸을때 1등급컷일 것 처럼 보이네요.
님 저랑 거의 다 똑같이 풀었네요ㅋㅋㅋㅋㅋ
근데 진짜 5번 일일이 다 구하는 방법밖에 없을까요?ㅜㅜ 일일이 구하느라 시간 잡아먹고 무슨 짓인가 했는데ㅜㅜㅜㅜㅜㅜ
그러게요.. 다른방법이 안떠오르네요 ㅋㅋ
코사인알파 코사인베타를 루트 1-사인제곱알파 이렇게놓으면 계산.좀 적어져요
이게 그말인데요 ㅎㅎ..
29번. 그 원기둥3개기출변형이라고 생각드는건 저뿐인가요
저도 그렇게 생각해요 ㅋㅋㅋ 그거 발상못하면 안드로메다로 가죠
전 수능완성 레벨3에있는직각이등변삼각형에서 평면정사영내렷을때 정삼각형이됫을때 그변길이구하는문제변형이라고생각했는데
아!! 그렇네요~! 감사합니다 ㅎ