쪼금만더가자 [442235] · MS 2013 · 쪽지

2013-10-29 10:18:51
조회수 532

이거^증명 (B) 부탁합니다~ 44445 수리1000점 기원

게시글 주소: https://orbi.kr/0003894409

f(x)는 삼차함수이구요,  역함수는 g(x)입니다.

변곡점은 (2.5 , 2.5) 이구요    f(2)= 3  f(3)= 2    인 감소함수입니다.  > 개형 쉽게 그려지죠? ㅋ

그럼 이건 f(2) = g(2) 임을 만족합니다. 

!!!!! 근데 왜       f(2)=g(2)     =2가    성립안하나요?

작년 9월 21번에서 f(3) = g(3) = 3이란 근거는 어디서 나오는 건가요?

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 쪼금만더가자 · 442235 · 13/10/29 10:39 · MS 2013
    회원에 의해 삭제된 댓글입니다.
  • 쪼금만더가자 · 442235 · 13/10/29 10:40 · MS 2013
    회원에 의해 삭제된 댓글입니다.
  • 쪼금만더가자 · 442235 · 13/10/29 10:42 · MS 2013
    회원에 의해 삭제된 댓글입니다.
  • 쪼금만더가자 · 442235 · 13/10/29 10:43 · MS 2013
    회원에 의해 삭제된 댓글입니다.
  • AnDanTi · 423267 · 13/10/29 10:48

    흠 흔히 증가함수 혹은 감수함수와 그 역함수의 근이 y=x에 있다고 하죠.
    근데 y=x위의 어떤 점을 기준으로 대칭인 함수는 예를 들면 y=-x+k. 이놈은 자기자신이 역함수 이죠. 모든 근이 같습니다.
    또 y=x위의 점p기준 점대칭 함수는
    역함수와의 근이 y=x위에 말고도 기울기가 -1이면서 점p를 지나는 직선과 함수의 교점이 근이됩니다. 이런 특별한 상황에서만 그런것같아요.

  • 쪼금만더가자 · 442235 · 13/10/29 10:55 · MS 2013

    아하그렇군요

    그롬 혹시.. 작년 2012년에 실시한 9월 21번 문제에서는

    제생각 : f(3) = g(3)이니깐 f(3) = g(3) = 3이라고 생각하는 것은 틀린건가요???

  • 쪼금만더가자 · 442235 · 13/10/29 10:57 · MS 2013

    안단티님 수험생이시면 수리 100점 맞으실거에요!

  • AnDanTi · 423267 · 13/10/29 11:13

    아뇨 님 생각이 논리적으로 타당합니다.
    위에서 말햇듯 y=x위의점에대해대칭이려면 함수는 필연적으로 감수함수여야합니다.
    하지만 2013년 9월모평 21번문제에서는 함수f(x)의 최고차항의계수가 1이라고 주어져있습니다.
    즉 증가함수인거죠. 증가함수에서는 함수와역함수의 근은 y=x위에 있으므로 f(3)=g(3)=3은 타당합니다.

  • AnDanTi · 423267 · 13/10/29 12:39

    아 수정할 부분이 생겼습니다.
    위에서 제가 말한것들은 다항함수에서고요.
    선생님께 여쭈어보니 무리함수.지수함수일경우에는 증가함수더라도 y=x위에 있지않은역함수와의 교점이 생길 수 있다고 말씀하시네요.
    즉 수능에서는 함수와 역함수의y=x위의 교점을 물을때는 다항함수밖에 출제할 수 없다고 하시네요.

  • PRF27 · 412302 · 13/10/29 17:50 · MS 2012

    증가함수라면 역함수와의 교점은 항상 y=x 위 아닌가요? y=x 위에 있지 않는 역함수와의 교점이 존재한다고 했을때 증가함수라는 가정과 모순되기 때문에지수함수든 무리함수든 증가함수라면 교점이 모두 y=x 위에 있는 걸로 알고 있습니다.

  • 쪼금만더가자 · 442235 · 13/10/29 15:34 · MS 2013

    와 정말 내용이 깊네요 시간 내 주셔서 매우 감사합니다^^