도구화만 하면 될까?
게시글 주소: https://orbi.kr/00037817947
이번 글에서는 1등급을 위해 도구화, 행동 영역 너머의 무엇을 지향해야 하는지에 대해 이야기하려 합니다. (좋아요와 팔로우를 지향해봅니다 ㅎㅁㅎ)
여러분이 단 한 번도 생각해보지 않았을 것이기 때문에 '글이 이해가 안 되면 어떡하지'하는 걱정을 하다보니 글이 길어졌습니다.
그래도 1등급에 대한 강한 열망이 있다면 한번쯤 아주 진지한 자세로 읽어보기를 바랍니다.
안녕하세요, 주예지 수학 연구소 AJOODA LAB 입니다.
이제는 굳이 말하지 않아도
자신에게 맞는 공부 방법
을 찾는 것이 중요하다는 것 정도는 모두가 알고 있습니다. 다만, 아는 것과 하는 것 사이에 큰 차이가 있을 뿐이죠.
지금부터 그 간극을 좁히기 위해 무엇을 해야 하는지에 대한 힌트를 얻어가기를 바랍니다.
여러분이 공부 방법을 선택함에 있어서 쉽게 간과하는 부분이 있습니다. 바로
목표는 어디인가?
입니다. 목표에 대한 현실적인 감각을 잃어버려서는 안 됩니다. 스스로 답을 얻었다면 계속해보죠.
여러분이 1등급이 아니라 2등급 혹은 3등급을 목표로 한다면 가장 중요한 것은
개념의 출력(아웃풋)
입니다. 이것을 용이하게 하기 위해 흔히 말하는 도구화, 행동 영역이 필요합니다.
'개념의 입력(인풋)은 중요하지 않은 것이냐?' 라고 질문한다면 당연히 그렇지 않습니다. 하지만 인풋은 누구나 하는 것이기 때문에 희소성이 떨어집니다.
참고로 개념 학습을 인풋까지만 하는 것으로 착각하는 경향이 있는데 아웃풋까지 학습해야 개념 학습이 완료되었다고 보아야 합니다.
한편, 여러분이 1등급을 목표로 한다면 개념의 인풋과 아웃풋 외에 추가적으로 익혀야할 것이 있습니다.
독해, 설계, 해결 과정의 논리 (Logic)
입니다. 지금까지 많은 강사가 이 부분을 학생에게 직접적으로 가르치지 않아왔기 때문에 다소 어색하게 느껴질 수 있습니다.
하지만 개념을 도구화(체계화)하고, 행동 영역을 정리하는 것만으로 1등급을 받을 수 있다는 말은 거짓입니다.
만약 그랬다면 숱하게 많은 학생들이 수학에서 1등급에 준하는 실력을 갖추어서 평가원이 아주 곤란했을 것입니다.
뿐만 아니라 논리와 독해력이 가장 필요하다고 생각되는 국어에서도 누구나 도전만한다면 손쉽게 1등급을 따냈을 것입니다.
하지만 현실에서는 자신의 노력만으로 2등급을 넘지 못하는 학생이 수없이 많이 있습니다. 여러분이 계속해서 성공한 경우만을 보기를 원하기 때문에 이러한 학생을 애써 외면하고 있었을 뿐이죠.
다시 말해, 여러분은 의식하지 못하지만 2등급에서 1등급으로 가는 과정에는 상당한 운이 필요합니다. 그 운은 재능일수도 있고, 좋은 선생님을 만나는 것일수도 있습니다.
여기까지 이 글을 읽었다면 아마 공부하면서 굉장히 답답함을 느끼는 학생일 것이라 예상됩니다.
분명 공부는 계속 똑같이 많이 하고 있는데 성적이 정체되었다는 압박때문에 힘겨운 것이겠죠.
그런 분에게 이 글이 도움이 되었으면 좋겠습니다.
앞으로 고정적으로 1등급을 받기 위해 여러분은
운의 영역을 줄여야
합니다. 그러기 위해 '왜 여러분 앞에 높인 벽이 마냥 높아보이는지' 진지하게 고민해야 합니다.
'개념은 아는데 문제가 안 풀린다'는 말을 달고 산다면, 지금까지 안일하게 도구화와 행동 영역에만 매달렸기 때문입니다.
고정 1등급을 받는 학생은 당연하게도 도구화와 행동 영역만으로 문제를 풀지 않습니다.
문제를 읽는 순간부터 그들의 머릿속에 논리 회로가 맹렬하게 돌아갑니다. 이것이 의식적이든 무의식적이든 말이죠.
이는 이따금 보이는, 국어에서 선천적인 독해력을 가진 학생에게 쉽게 보여집니다.
그런 학생에게 모르는 문제를 질문하면 '그냥 읽어보니 답이 이건데 왜 답이 그거냐고 물어보면 그냥 그래.' 라는 답을 듣게 되겠죠.
이러한 무의식적인 요소는 문제를 읽고, 푸는 과정에 상당히 많은 영향을 미칩니다.
그러니 반드시 1등급을 받아야겠다면 도구화와 행동 영역이 희소성이 떨어진다는 사실을 받아들이길 바랍니다.
반드시 더 나아가서 논리를 어떻게 의식의 수면 위로 꺼내올려야 하는지에 대한 진지한 고민을 하고, 배우기를 바랍니다.
그러려면 먼저 고정 1등급을 받는 학생들이 문제를 독해하면서 하는 생각, 즉 논리를 그대로 따라하려고 노력해야 합니다.
지금까지 강사들이 여러분의 운에 맡겨두었던 것을 여러분의 실력으로 증명하길 바랍니다.
앞으로 여러분이 논리를 따라하며 공부할 수 있게 하기 위해서 작년과 같이 시간이 나는대로 오르비를 통해 문항을 공개하고 그에 대한 독해, 설계, 해결의 논리를 담은 해설지를 제공하도록 하겠습니다.
누구보다 빠르게 자신의 고민을 해소하고 싶다면 팔로우는 기본이겠죠?!
긴 글을 읽느라 고생 많았습니다. 이 글을 통해 생각이 많아졌다면 다행입니다. 그렇게 한발 더 성장하길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수입이 외모에 직결되거나 몸을 혹사하는 일이 아니라면 어느 직업군이든 외모 평균이...
-
의미는업ㅅ지만 3모12321나왔고 내신은 4점대이고 목표는 경희대 라인이라 내신으론...
-
교육청인지 평가원 수능인진 모르겠는데 내 친구가 못찾으면 잠 못잘것같대서...
-
난 그래봤자 뱃지도 없는 대학다니는 인생인데
-
같이 근무하는 분이랑 과자 먹으면서 말하던 도중에 내가 잠들었대
-
입문 엔지라고 들었는데 아무리봐도 입문급은 아닌거같은데 제가이상한건가 특정문제들...
-
코피가 안 멈춰요 엉엉 이대로 들어가면 순삽에서 피 부족해서 쓰러질 것 같아서 자체 연기하고 있어요
-
거긴 공권력 안닿잖아
-
ㅈㄱㄴ
-
메디컬 목표로 반수할건데 선택장애가 왓습니다ㅠㅠ 작작수 언매 미적 99 95 작수...
-
여름휴가로 신안가보는거 어떠냐?
-
실수 < 적분값 < 실수 이런 식이었던걸로 기억하고 적분값이 저 사이에 있으려면...
-
깨워야징 헤헤
-
곧 2회 나오는데 뭔 1회 풀이냐 싶으실 수도 있는데 부엉모 자체를 어제 첨...
-
뭐 풀지 추천좀... 킬캠은 풀었음 1회 88 2회 92
-
엉덩이 끓일 일 있나
-
큐브 0
뭔ㅋㅋ 서버를 어디 아프리카 밀림 한복판에서 만들었노
-
고2입니다 특성화고 다니고있습니다 +특성화인지라 모의고사를 풀어본적이 없어요 최근에...
-
종강안하나 0
할때됐는데
-
뭐지
-
평가원 #~#
-
그립습니다 0
뭔가 오늘따라 더욱 그립습니다
-
둘다 타임어택 있는디 전자는 1컷 47정도고 후자 44-5에 후자는 심지어 객관식...
-
[속보]이재명 “이준석, 결국 내란세력과 단일화 나설 것 예측” 5
이재명 더불어민주당 대선 후보가 고 노무현 전 대통령 16주기인 23일 경남 김해시...
-
공통 1틀이면 백분위 99임?
-
물1화1 2021 수능난이도vs사문세지 2025난이도 1
두개 중 하나 선택해서 1등급 받아야한다 할때요 전자랑 후자중에 뭐가 더 공부량...
-
공교육은 죽었다. 2주 전까지만 해도 전 '국립서울맹학교'의 자랑스러운 국어 교사로...
-
킬캠 2회 0
미적 15,28찍맞 20,29,30틀 88인데 (실상80) ㅈㄴ 자괴감드네 28은...
-
왜 기성한의사들이 현시점 버는걸 기준으로 입학을 하냐? 니들이 졸업하고 일을 시작할...
-
진로 취업 회사생활 학교생활등 다 괜찮습니당
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
한의대는 진짜 오지 말라고 ㅇㅇㅇ
-
미적선택 재수생인데 미적 뉴런이랑 기출 겨우하긴햇는데 킬캠푸니까 28~30은 시간도...
-
대출있어서 반수못해 ㅆ발아
-
피뎊주는거임? 아니면 어플이 따로 있는거임? 피덮주는거 아니면 피뎊으로 만들수있어요?
-
;; 이거 어케고침
-
화나내 10
왜케 일을 떠넘기지 너네일이자나 화나내
-
이제불태웠으니까 0
롤한판 하고와야지
-
25수능 안본 상태고 1. 올해 6평 기준으로 50장 이상 장학 나오려면 어느 정도...
-
1컷~2초 안정1 둘이 어느부분에서 차이남? 단순 실력? 운영? 연산? 1컷에서...
-
거기가 처우 좆같으면 공대로 반수를 하던지 편입을하던지 하다못해 졸업했으면...
-
반수반 들어갈까 고민 중인데 컨텐츠량이 얼마니 많나요..? 지금 수학 단과...
-
1회차 94 빡빡해서 2회차 풀었는데 10분 남기고 100뜸 근데 막상보니 1컷 더...
-
N수 상산고 경희대면 엄... 멀리 안나가겠다 친구는
-
5덮 수학 96 5
백분위 몇뜰거같으심여
-
라고 쓰면 그 사람이 오겠죠?
-
1컷이 물 화 생 지 45 44 40 39 인데 생/지는 걍 사탐급으로...
-
5개월동안 건강땜에 공부를 쉬었는데 이제 건강이 많이 회복되어서 다시 공부를...
흔히들 말하는 '풀이의 필연성'을 의미하는 걸까요?
풀이의 필연성을 어디에서 찾는가에 방점을 찍어야 합니다.
예를 들어, a라는 조건을 읽고 A라는 개념을 떠올렸다면 조건을 통해서 필연성을 찾은 것입니다. 이것은 개념의 출력(아웃풋)의 영역입니다.
하지만, a라는 조건과 b라는 조건을 붙여읽어야 하는 상황이거나, 세 조건 a, b, c 중에서 어떤 조건이 풀이를 시작하기에 적합한가와 같이 경중을 따지는 것은 논리의 영역입니다.
풀이의 필연성은 사실 논리와 지식이 적합하게 갖춰져있다면 자연스럽게 따라오는 결과일 뿐이죠.
와뭔가 심오한글이다 진짜 한발짝 더 나아가게해주는 그런무언가 흠... 좋은 글 감사합니당 ㅠ
다 읽으셨나보군요!! 그저 대단할따름입니다.
제가 수험생이였을 때, 그것도 무려 6월에 그런 열망이 있었나 싶을 정도네요.
고민하다보면 분명 닿을 수 있는 목표이지만, 고민의 방향이 잘못되었다면 높은 성적을 받는 것의 많은 부분이 개인의 운에 달려있다는 점이 많은 학생들을 관찰하면서 알게 된 안타까운 사실이었습니다.
일례로 제 친구는 고등학교때 '개념 원리 - 쎈 - 기출문제'만 보고 고정 1등급을 유지했습니다. 저정도만 제대로 이해해도 수능을 보는데 지장이 전혀 없다는 것이죠.
하지만 누군가에게는 상당히 부족한 양일 것입니다. 양으로 논리를 습득하려면 상당히 많은 문제를 풀어야 하기 때문에 운이 좋다면 수능 전에 체득할 것이고, 운이 나쁘다면 재수하면서 체득할 수도 있겠죠.
그러니 반드시 고민하면서 공부했으면 좋겠네요!!
긴 글에 더불어 긴 댓글까지.... ㅎㅅㅎ
응원하겠습니다!!