2014학년도 6평 수학 A형, B형해설 파일 올려요~~
게시글 주소: https://orbi.kr/0003699197
2014학년도 6월 평가원 해설지(B)_해설완성본-hwp.pdf
2014학년도 6월 평가원 해설지(A)_해설완성본-hwp.pdf
에휴~~ 노가다 해서 이제 해설 파일 완성하였네요...손으로 푸는 것과 달리 워드 작업도 하고, 그래프도 그려 넣느라 힘들었네요..
하지만 여러 분들이 보기에는 한결 예쁘고, 깔끔할 겁니다.... 많이 많이 배포 해 주세요...~~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그렇지 않고서 유미를 뽑았을리가 없음
-
관종이고 관심받는 게 즐거움 하찮긴한데 영화부 영화출연도 하고 뮤지컬부 공연한대서...
-
심심하면서도 한편으로는...소파에 누워서 폰질하니 좋은 것 같기도...
-
현역때 폰 보느라 하루 공부 망친 날이 많아서 하하..
-
나 의사인데 26
팥붕보다는 슈붕인듯
-
몸이 존나 좋게 나옴 현실은 개돼지인데 그냥
-
하..
-
부산대 약대 전남대 약대 어디가 더 높나요 붙으면 어디가심??
-
무기한 휴르비 3
댓 1등 덕코 다 드림
-
쟤네 탑미드동고쇼 극후반눕롤 투툴이라
-
기상.. 9
아
-
선배님들 그쵸? ㅎㅎ
-
에피 인증. 4
2025년 6월 3일에 올것.
-
헤헤헤
-
캐니언 진짜 개처못한다 16
이제 진짜 니달리 그브 투툴이네
-
작수 심찬우 듣고 문학은 심찬우 방식이 잘맞아서 계속 심찬우 방식대로 공부할거...
-
저 젓갈 러버임 2
젓갈이랑 사귈 수도 잇음
-
기하학적으로 해석 절대못하겠는데ㅠㅠ
-
올해 간호법 0
6월말에 시행되는 간호법이 구체적으로 뭐가 바뀌는건가요?
-
감기인줄 알았는데 다른병이어음 ㅃㄹ낫고싶다
-
학원 알바 하는데 고딩 셋이서 어느 대학 붙었냐는거임 그냥 이대랑 중대 붙었다고...
-
이거 왜 안되는지 설명좀??
-
아니 틀딱 기출 틀리는 ㅂㅅ이 어딨냐고 ㅋㅋㅋ 아 ㅋㅋㅋ 0
그것도 국어 틀딱기출 ㅋㅋㅋㅋ 그게 나네. 쪽팔리니까 진짜 정신 차려야겠다..
-
시대인재북스 d caf 말고 아는 게 없다
-
옆 분 ㄹㅇ 잘 뛰시네 10
12로 25분까지만 따라가고 더 이상 못 뛰겠뇨이 심지어 13 맞춰놓고 뛰심 GG선언
-
딱걸고 ㅇ..여보세요? 이것도 힘든데!
-
슬픈사실)기인쵸비는 원장롤의경험이있다..
-
추가합격받고 인증해야하는데 진짜 복잡한 사정으로 모바일 학생증이 내일에서야...
-
지금 공부가 중요하노???? 바로 유튜브켜서 lck 라이브 스트리밍봐라
-
오느른 5
오랜만에 축구 하는 날
-
초콜릿언제오지 1
당일발송이던데 너무늦지않게왔으면좋겠다 바로냉장고에넣을수있게..
-
기적 만들어보자
-
남들은 당연하게 하던거임.. 그게 문제 등급이 낮을수록 배울건 조ㅗㅗ오오오ㅗㅇ나나 마늠
-
ㅜㅜ
-
2세트 이길세트 였다고 아쉬워하니까 멘탈관리 바로 해주네
-
수능이 존나 고였으니까 그러지 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
난 밥먹을 자격도 없는 쓸애기 같아서 이틀동안 밥도 안 먹었는데 오늘 친구만나서...
-
시발5꽉이네 3
젠지존나못하네 걍 져라 시발
-
일단 난이도는 여전히 쉬운 편은 아녔음. 몇먗 허를 찌르는 문항이 있었고 14번...
-
아니 젠지왜저래 9
왜 5꽉을가... 베테랑서폿의부재+감코진부재인가...
-
수학1 하시면 됩니다
-
ㅇㅈ?
-
어이가 없노 ㅋㅋㅋ
-
머함님들 6
ㄴㅇ
-
상남자식 반영비 7
수학 백분위 = 내 등수
-
평균 6등급인데 ( 생지 ) 인문계 가는 선택지가 없습니다 사탐런했다가 어떻게 될지 몰라서 무섭네요
-
수학 오답노트 0
수학 오답노트 어떻게 쓰는게 가장 효율적일까요? 노트에 문제를 다쓰면 너무...
-
10분정도 고민했는데 안보이면 바로 답지로 넘어가도되나요?
-
퇴근길 행복한 고민
-
원서 실패 2
저보다 점수 더 못받았는데 스나로 잘 간 사람들 볼때마다 원서질 실패라는 생각...
정말 감사합니다....
일등으로 다운받고 댓글 달앗네요...
열심히 공부할게요 ㅜㅜ 그리고 쪽지 보내드렷는데 수학관련 상담 ㅜㅜㅜ
답장좀 해주시면 감사하겟습니다....
일단 a형 해설지도 작업 해야 하고 6평 분석노트 a형 b 형이 나와야 해서 그거 먼저 할께요 그런다음에 상세히 답변 드리죠
고맙습니다!!
넵~~30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~ 그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
고맙습니다!
마찬가지로 30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~
그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
감사합니다 ^^ ~ 선생님의 킬러문항강의를 많이 연습해서 그런지 이번시험은 평소보다 좀 더 쉽게 느껴진것같아요.
분석노트도 기대하겠습니다!
감사합니다 분석노트는 월요일에 만날 수 있습니다
오늘에 Grand Final 나왔네요
폭풍 교재 작업 중...
잘 보겠습니다
넵~~~ 열공해서 좋을 결과 있으시길~~~
동훈쌤!!! 21번 해설지에 f(x) 미분하신거 하나 잘못된게 잇는 거 같아요!!
(x≥0) 일때 6x-a가 아니고 3x^2-a 인거같아요!!
다른건 너무 깔끔하셔요ㅎㅎ감사합니다!
A형 이죠? 에구 고마 우셔라~~~~
수정해서 다시 올렸습니다.. 감사~~
너무 익숙한 닉네임 이네요... ^- ^
죄송한데요ㅠㅠ수학A형18번 변BH+변HA=루트5k/2+2k/루트5 왜이렇게나온거에요??....
직각삼각형의 세 변의 길이가 2, 1, 루트5 이렇게 나오죠?
그런데 내접하는 직사각형의 가로 2k, 세로 k 라고 한다면 이 길이를 통해 다른 작은 직각삼각형의 다른 변의 길이도 알 수 있는겁니다.
ebs 수능특강과 완성 다 풀고 샘 ebs변형푸는것과 개념정리를 이 번 한달간 하는게 제일 좋을까요??
그 이전에 일단 이번 6평에 좋은 점수를 받았다 하더라도 이번 6평과 연계된 기출과 EBS를 샅샅이 찾아 분석 + 평가하는 시간을 조금 더 갖으세요.
제가 6평 분석노트에서 이런 점들을 부각시킬 것이며, 예전과 다른 경향성 들을 구체적으로 파고들어 학생들에게 전달하려고 합니다.
그리고 나서 향후의 공부 방향을 설정하도록 하세요... EBS변형도 도움 빠르게 돌리시길....
30번 문항 (n,m) 이 아니라 (m,n)을 구하는 문제예요!
그리고 (1,20)를 (1,2)로 잘못쓰신거 같아요~ 오타내신듯..ㅎㅎ
감사해요~ 잘봤습니다!
쵸고빅님 고마워요~~~ 지금 6평 분석노트 만드는데 , 미리 오타를 잡아 내니 다행이네요...ㄱ ㅅ
18번에서 왜 두 직사각형이 닮음인가요?
두 직사각형의 가로, 세로의 길이의 비가 1:2로서 동일하기 때문입니다.
A형 21번과 관련하여 질문 드립니다
극댓값의 정의는 함수의 개형이 증가에서 감소로 바뀔 때로 알고 있습니다.
a>0일 때 함수 f(x)는 x=0에서 미분은 안 되겠지만,
극댓값 0을 가지지 않나요?
따라서 극댓값이 5라는 문제의 조건에 위배되므로 a<0라는 것으로 문제를 풀어나가
야 할 것 같습니다만........
네 맞아요 극대값이 0 이라서 모순입니다
해설에는 a>0일때 함수 f(x)의 극댓값이 존재하지 않는다고 나와 있어서
수정이 필요하다고 생각해서 언급했습니다......
감사합니다. 6평 분석노트 만들때에는 반영했네요.. 고맙습니다~~~
코난샘 혹시 모평 당일날 올려주신 현장 풀이 그대로 있는 시험지 파일 다시 올려주실수 있나요...? 어제 저장을 안해놔서 오늘 다시 찾으려고 하니 없어서요... 혹시 그대로 있는데 제가 못찾고 있는 건가요...? ㅠㅠ
헉~~ 현장 풀이요? 워드 작업 하고 나서는 필요 없겠다 싶어서 버렸는데....
그리고 그 글도 해설지 Reload 시키고 나서 제가 지웠습니다...
혹시 무엇 때문에 그런 건지 물어 보면 제가 답변해 드릴께요....
선생님 A형 10번에서 연속인 걸 찾을 때 좌극한이랑 우극한이 같고 그 극한값이 함수값이랑 같아야 연속이잖아요 근데 해설에 함숫값이랑 우극한만 따져봤는데 어차피 좌극한이랑 함숫값이 같아서 생략한 건가요? 이전에 어떤 문제를 풀 때도 해설에는 함숫값이랑만 비교하더라고요 아직 개념 공부를 도함수의 활용 전까지 해서 모르는게 많습니다 어차피 다항함수니까 극한값이랑 함숫값이 같아서 그냥 그렇게 한건가요? 답변 부탁드리겠습니다
네, 좌극한과 함수값은 당연히 같이 때문에 좌극한을 굳이 쓸 필요가 없어서요..
님이 말씀하신 것처럼 다항함수이니까 극한값이랑 함숫값이 같아서 그렇게 한 거 맞아요~~~~
질문이 있어서 쪽지 보냈습니다. 답변 부탁 드려용
네 답변 드렸어요~~~