함수의정의?
게시글 주소: https://orbi.kr/0003694566
수학에서 함수의 정의가 x값에 y값이 각각대응되면 x,y가 함수관계라고알고있는데..
그러면 포물선 타원 원 이런건x값에 y값 2개가 대응되니까 함수가 아닌가요? 근데 어떻게함수만할수있는 미분,적분을 할수있는거죠?ㅠ 함수의 성질을 가지는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
으휴휴
-
언매 93 미적 92 물1 48 생1 46 지1 45
-
1. OMR - 가채점표 대조 2번이나 했는데 2. 두 번 모두 내가 가채점...
-
실은 그게 나였음
-
갑자기 궁금해짐 좋게 말하면 접근성이 좋은 사람이라고 생각하는데.....
-
수학 N제 추천해주세요... 최대한 많이...
-
문득 새삼 궁금
-
1. 긁다 - 긁적 구기다 - 구기적, 구깃 넓다 - 넓적 검다 - 거뭇 붉다 -...
-
아무래도 못생긴여자가 더 잘 뽑히겠죠?
-
약1냔만
-
정철원->어깨갈리고 제구 박살남->폼다망가짐 전민재->씹폐기물 김민석 -> 정가영 후계자 ㄱㄴ
-
지역별 학령인구 수에 비례해서 학생 선발하면 역차별 아님? 1
안녕하세요 최근에 논란되었던 지역별 비례선발제를 바탕으로 에세이를 쓰고있는...
-
07인데 내년에 수시쓰면서 정시도 같이 준비하려고합니다. 2학년 물화지 들어서 물리...
-
뭐가 더 어렵다고생각하시나요?
-
시팔무슨 과잠입고 슬리퍼신었다고 따로불러서 기합주더라 수업한명 늦었다고...
-
아니 피지컬은 작년보다 훨씬 오른것같은데 작수보다 백분위 8떨굼 미적 계산량...
-
ㅆ멸치 ㅇㅈ 8
-
지금 휴대폰은 갤s23+쓰는 중이고 자취하면서 독학재수중입니다. 야동>커뮤>유튜브...
-
수학3점을절대호머하지마 10
3점의위력은강력하다 평가원은30번이나 3번이나거의뭐똑같이본다는것임......
-
1번 문제 정답 5번> 가채점엔 4번으로 돼있음.
-
이거 벽에 붙여놓고 공부했었는데 졸다가 이거 벽에서 떨어져서 내 어깨 위에 붙는거...
-
탐망이 많이 보이네
-
08 정시 0
수학 천재임.
-
사탐런? 2
지구 4 5 6 왔다갔다 하고 내년에 수학에 시간을 많이 할애해야 할 것 같은데...
-
에라이
-
계산 복잡 0
이 나한테는 제일 잘 맞는 거 같다 냥대야 어떤 계산을 내도 받아들일 테니 제발...
-
학교를 안 나가서 엌
-
그 캐릭 이름을 모르겠음
-
나같은 사람있나 5
공통 준킬러 2개빼고 60분컷.. 흑흑
-
보기만 해도 머리가 지끈거리는...
-
ㅈㄱㄴ
-
안씻는 물스퍼거 300명만 스나하면 되지 않을?까
-
수과탐 백분위 97 98 96 vs 99 98 82 2
뭐가 더 높아요?
-
이 늘어날 것이라고 보시나요? 제가 알기론 수의대에 경우 건국대를 제외하면 사탐...
-
목이 되게 길쭉길쭉하심
-
연대 미래 의예 0
수학 1번 1-1 -27/25, 1-2 71/75 맞음?
-
라인 어디 정도 일까요? 그리고 스나 지른다면 어디까지 지르는 게 좋아보이나요?...
-
나도 뱃지 받고싶어..
-
1. 시험지 보고 수험표 뒷면에 베끼기 2. OMR 보고 수험표 뒷면에 베끼기 3....
-
현우진 드릴 4
인강 꼭 필요한가요? 답지만 보고 공부 가능한가요? 수분감은 해설지랑 강의랑 차이가...
-
고서한
-
확통이 개꿀통인거같음... 선택과목 만점 아닌 이상 유불리가 없다<<<응시자 수가...
-
가>나>다 순임? 만약 3개다 합격시 선호도 아니면 군은 상관없음?
-
과탐 5,6등급 맞아도 과탐만 받는 메디컬 가는거 아님? ㅋㅋㅋ
-
언매-공통만 틀린 92 화작-공통만 틀린 94or95 수학(선택과목 어쩌구저쩌구...
-
물리 1년동안 교육청평가원 합해서 3개 틀렸는데 나만 이런 게 아니고 상위권 표본...
-
손녀도 할머니가 되었네요
-
그냥똑똑이가되고싶었다
-
물1 안고였다 5
올해수능 50점받기 쉬웠다. 그러니 다들 물1을 고르도록.
포물선, 타원, 원 등은 함수가 아닙니다.
하지만 구간을 나누어보면 함수입니다.
예를 들어
x^2 +y^2 = 1이라는 원은
y=root(1-x^2)
y=-root(1-x^2)
이라는 두개의 함수의 합집합으로 표현할 수 있습니다.
따라서 각각을 따로 미분을 할 수 있다 생각하면 편하구요.
그리고 y= 로 표현되는 평소에 배우던 함수 들로 나누어서 표현할 수 있는 함수를 음함수라고 합니다.
즉, x^2+y^2=1 같은 함수는 음함수입니다. 여기서 따로따로 미분하지 않고 한번에 할 수 있는 방법으로 음함수의 미분법이라고 따로 배우는 것이지요.
자연수개의 엑스값에 하나의 와이값이 대응되는게 함수죠..
음 y축과 평행하게 선을 그어보면 원이나 포물선은 교점이 두개가 생기죠?
즉 하나의 엑스값에 두개 이상의 y값이 대응되는 경우라 함수가 아닙니다.
다시 설명하면, 하나의 엑스값은 하나의 와이값에만 대응될 수 있지만 하나의 와이값은 여러개의 엑스값에 대응됩니다. 전에 야매로 배울땐 x에서 y로 화살이 나가는데 화살이 둘로 쪼개지지 못한다고 배웠습니다.
(아 문돌이가 본능이라 글로만 설명하게 되네..ㅜ)
함수의 정의는 1.정의역의 원소는 모두 함수에 의해 대응이 되야 하며 2. 그 원소가 각각 하나의 치역에만 대응되어야 한다는 것.
하지만 원같은 경우는 정의역을 제한해서 1번 조건을 맞춘다고 해도 2번 조건에서 여지없이 탈락하죠. 따라서 원은 어떠한 경우라도 함수가 아닙니다. 하지만 원점을 중심으로하는 단위원에서 (0,1)에서 미분하라 했을때에는. 원을(0,1) 근방에서만 보면 함수의 성질을 만족합니다. 그래서 이런 경우를 두고 implicit fuction. ㅈ즉음함수라 합니다. Implicit는 영어로 감춰져 있다는 뜻이죠. 다시 말해 전체로 보면 절대 함수라 할 수 없지만, 미분을 정의할 수 있는 충분히 작은 부분만보면 함수라 할 수 있다는 거죠. 이것은 비단 원뿐만 아니라 우리가 좌표평면에서 그릴 수 있는 거의 모든 곡선은 음함수가 됩니다.