테일러 급수
게시글 주소: https://orbi.kr/0003627183
테일러 급수가 있잖아요...
이거요
이건 고등학교 수준에서 증명 못하나요??(그러니까 막 몇페이지씩 가는게 아니라 10줄정도에서 저거에 관한 정보를 주면 풀수있을정도)
저희학교 선생님이 저걸 학교시험에 낼수있다고하시네요(단순히 겁주는게아니라 여태까지 저런문제를 서술형에 수리논술처럼 내셨습니다. 그래서 이 선생님이 내신 문제 100점이 딱한번 나왔습니다 ㅠㅜ 고2수학이 걱정되네요...이 선생님이 내는 수학이 5단위인데...)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
차단 완. 지능과 얼굴 모두를 가졌다?? 기만기만
-
설마 의대생이 연예인준비한다고?? 어디서 볼수있음??? 출처좀
-
연고대 문과가 원탑임. 저 입결에 매년 각 학교 로스쿨만 400명씩 ㅇㅇ
-
05 재수생입니다 현역 33342 였는데 올해 12112 받았어요 수학 그래두...
-
건대 1학년 1학기 군휴학할건데 수강신청 해야하나요? 아님 걍 수강신청 안하고...
-
누백 계산 1
누백은 계산 어떻게 하는건가요??..
-
ㅇㅈ 20
-
한서삼라인까지 뚫렷다는데 확인된건가 헬린피셜 핵빵은 맞다던데
-
반수성공팁(경험담아님) 10
과단톡을 여캐일러저장소로 활용하면서 통매음 위험이 있으므로 수위조절을 하는 것이 핵심 감사합니다
-
본인 sm 6
좋아함..
-
보통 노트에 푸시나요 문제집에 바로 푸시나요
-
고대병원에서. 서울은 이런 것두 주는구나…
-
관독 조교쌤 5
왜케 예쁘시냐 학벌도 좋을텐데
-
환급 뭐 되던데 나중에 연락와요?
-
follow the sound of the beating heart the...
-
등록금 내고 따로 제출해야하는 서류 (졸업증명서) 는 없는거죠? 토욜이라 학교...
-
헤어질때 힘드니까~ 그냥 이대로 친구아닌친구~
-
그냥 닉언도 아니고 친목성 닉언인데 저거 괜찮은 거 맞나
-
저는 좋아하는데 이게 혈액 순환이 안되서 그런가요?
-
으흐흐 4
-
이신혁T 라이브 0
현강생 아닌데 복습영상 제공되나요??
-
이젠 까일일이 전무하겠노..
-
구합니다! 의대진학자/ 수학과 / 논술합격자 환영해요,,
-
사상초유의 사태네
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번을 찾습니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
기출에 자주 나온 소재 발상을 다 기억하는건 절대 아니죠? 익숙한거죠..?...
-
얼굴 vs 몸매 7
ㅈㄱㄴ
-
지인한테 말할 수 있음?
-
김현우 현강 0
김현우쌤 대기번호 500번이상이면 언제쯤들어갈 수 있나여
-
전자는 헤어지면 끝이지만 후자는 헤어져도 못잊음
-
내가 잘 적응했을 거라는 생각이 들진 않네
-
원래는 애니본다고 하면 윽 씹덕파오후 해서 못말했다면 요즘은 패션십덕들이 많아져서...
-
은 바로 나
-
재수생 0
대학가면 2학년이 동갑일텐데 대학생활 내내 깍듯이 머리 박아야 하나요?
-
250627 28번 세트 어려운편인가요? 제가 초보라서 어려운거 같긴한데 좀 빡세네요 퓨ㅠ
-
야호호
-
옯만추 후기 6
왜클릳
-
플래너랑 샤프 줄거야 학생들한테
-
아 강등 0
에휴
-
확통 29 30번 하나도 못풀겠음 확통 2등급보다 미적2가 표점 높지않음? 확통...
-
버티는 자가 승리한다 고로 난 승리한다
-
산책이나 런닝할때 경로 지도에 저장해주는 앱 잇음뇨??? 4
워치 없어용
-
의치대 노리는 최상위권은 이제 전략이 딱 세 가지 정도로 나뉘는 것 같음 서울대...
-
고구마떡국
-
댓글이나 쪽지 부탁드려요!! 핵펑크라는 소문이 진짜인가요??
선생님께서 쓸데없는걸 가르쳐 주셨는데다, 제대로된것을 가르쳐 주지 않으셨네요. 저건 테일러 정리라기 보다는 [각 함수의 n차 테일러 다항식]이라고 부르는것이 정확한 표현입니다. 테일러의 정리는 특정 함수별로 정해져 있는것이 아니라, 일반적인 식으로 유도되어 있습니다.
정확한 증명과정은 고교과정 이상의 것이 필요할것 같네요.
아, 이걸 어떻게 설명하면 좋을까요.
메일 주소를 적어드리면 정확한 증명과정과, 진짜 테일러의 정리가 뭔지 증명과정과 함께 적어서 한글문서를 보내드리죠.
원리는, 어떤 특정 함수의 한 점에서 접하는 일차함수를 정하고, 그 점에서만큼은 특정 함수와 일차함수의 형태가 동일하므로 그 접선의 방정식을 1차근사식이라고 부릅니다. 이 논리를 n차로 확장시켜 보낸것이 n차 테일러 다항식(n차 근사다항식)이라고 하며 현재 님께서 작성하신 테일러 급수라고 불리는 것입니다.
메일주소 적어주세요. 보내드릴게요.
제대로 안가르쳐주신게아니고 제가 이름을 몰라서 ㅋ큐ㅜ
선생님은 e^파이i=-1 이란걸 가르쳐주셨는데 저희가 대충 설명해달라고하셔서 저런게 있다라고만하셨어요(이름은 안 알려주시고)
suvupthesky@naver.com 으로 보내주시면 감사하겠습니다. ㅠㅜ
오일러 공식입니다. e^파이*i + 1 = 0으로 많이들 쓰지요.
수학자들이 가장 아름다운 공식으로 뽑기도 합니다. 자연을 의미하는 수치인 자연상수 e, 완벽함을 의미하는 원을 상징하는 파이, 모든 수의 처음을 알리는 1, 무한의 반대개념인 [없음]을 의미하며 다른 숫자들과는 상당히 다른 0 모든게 있지요. (물론, 가져다 붙인 감이 없지않아 있습니다만....) 그 내용은 [고급수학]에 있습니다.
아니, 그냥 교재를 통채로 드릴테니, 테일러 급수와 오일러공식 모두 찾아서 보시죠. 재미있을겁니다.
제가 고급수학 교재를 보내드리겠습니다. 그 중 7차 개정 전 고급수학을 찾아보셔서, 소단원 중 테일러급수를 찾아보시면 될겁니다.
솔로깡님 저도 고급수학 보내주실 수 있나요?
ehdghks709 nate com 가능하다면 부탁드려요..
감사합니다.
??
원리는, 어떤 특정 함수의 한 점에서 접하는 일차함수를 정하고, 그 점에서만큼은 특정 함수와 일차함수의 형태가 동일하므로 그 접선의 방정식을 1차근사식이라고 부릅니다. 이 논리를 n차로 확장시켜 보낸것이 n차 테일러 다항식(n차 근사다항식)이라고 하며 현재 님께서 작성하신 테일러 급수라고 불리는 것입니다.
이건 뭔 개소리냐;;
테일러 정리는 평균값정리를 확장시킨거야
글 전부 지웠습니다~~!
임의의 다항식으로 두고 차례대로 미분해가면 일반항 구하실수 있을거에요...
f(x) = a_1 + a_2x + ....
하고 차례대로 미분해가면서 ..