2012년 9월모의고사 수리가형 27번문제 질문좀 드릴께요..
게시글 주소: https://orbi.kr/0003577700
이제 고3되는 학생인데요
평소에 수학을 못하지는 않는데, 공도벡에서는 유난히 죽쑤고 있습니다....
이런말 하면 핑계라고 하시겠지만, 공간지각력이 엄청 후달려서요 ㅠㅠ
한석원선생님도 수능은 공간지각력을 요구하는 게 아니고, 일관성있는 논리에 따르는거라고 하셔서,
한석원선생님께서 강조하신 삼수선정리, 이면각, 법선벡터 사이의 각 이쪽은 공부했는데요.
이렇게 단면화하는 문제에서는 전혀 약간만 복잡하다 싶으면 감을 못잡겠습니다.
해설도 보면 전부 다 단면화해서 풀던데, 어떤 근거로 단면화하는건가요?
막 평면이 비뚤어져있거나 걸쳐있거나 하면 단면화했을때랑 모양이 달라질 수도 있지 않나요?
오르비님들께는 우스운 질문이겠지만, 정말 나름대로 고민 끝에 질문 올려봅니다..
그리고 이 문제가 공간지각력을 요하는 문제인가요:??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
그닥 엄청난 공간지각력 까지 필요하진 않을 것 같은데요 ..
아뇨 단면화시키는거 몇문제만 풀어봐도 쉽게 푸십니다
이문제는 완전 쉬운 4점문제인데... 공간도형 안배워도 풀수있어요
저도공부부초창기에는 3차원이야기를 ㅅㅂ어떠케함부로2차원에다가옮겨 했는데 기출마니풀어보세여 기출이답입니다 그리고이문제는문제조건그대로해서 2차원화시켜보세요
구 2개가 중심이 꼬챙에이 끼워져 있다하면요 한 구에서 접평면을 만들어서 다른 구를 자르게 되는데요. 이때 꼬챙이가 회전축이라 생각해보면 축을기준으로 대칭되는게 보이잖아요 어차피 같아지니까 단면화해서 하면 되는데요.. 전 이렇게 이해했는뎀.........
수리 문제들 중에 단면화해서 풀 수 있는 문제들도 많습니다만, 그렇지 않은 문제도 있고 그렇게 해서 풀면 안되는 문제들도 많습니다. 단면화하면 쉽게 풀리는 문제들도 3차원으로 먼저 그려놓고 무엇을 구하는 것인지 어떻게 할 것인지부터 생각해보면 무엇을 단면화해야되는지 생각 할 수 있어요.
제 생각입니다만, 님은 무조건 전체 도형을 단면화시켜야된다는 생각에 잡혀있어서 무엇을 구하는 것인지, 그것을 어떻게 하면 잘 될까라는 님만의 단면을 생각하지 못하고 답지 등의 단면에 사로잡힌 것 같아요.
머 결론은 위의 방법으로 님만의 단면을 차근차근 그려보시면 됩니다.
공간도형을 우리가 풀려면 평면상에서 단면화를 시켜야 계산할 수 있겠죠..
그런데 어떠한 단면을 생각할지는 해설지에는 나와 있지 않습니다.
그런데 이게 정말 중요한 포인트이죠..
결론은, "문제의 핵심적인 정보가 담겨있는 단면을 잘라서 생각해야 한다"입니다.
단면=평면의 결정 조건을 생각해 보세요
두 직선은 하나의 평면을 결정하는데,
위 문제에서 "만나서 생기는 도형의 반지름"과 이것을 구하기 위한 두 구의 중심을 연결한 직선을 생각하게 되죠.
이 두 직선을 포함하는 단면이 해설에 나와 있는 겁니다.
공간문제 공부할 때 어떠한 단면을 생각할지 연습 많이 해보세요