Cantata님 2014 B형 모의고사 푸신 분들 28번 헬프좀요
게시글 주소: https://orbi.kr/0003487576
28번 벡터문제 못풀겠어요 ㅜㅜ
도와주세요 올비 수학고수님들
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 이제 빠르게 다 넘겨버리는 경우가 많아요 그냥 테두리 없애기용(?) 대신...
-
성격 그리고 따뜻한 마음 약간의 센스 이런게 중요하다고 봄
-
그림 그려드림 4
으흐흐
-
이러면 어캄
-
중요한건 키가 아님 12
대두 이건 답이 없음ㅋㅋㅋ 거의 바꿀수가 없는 거라 사실상 재능임ㅋㅋㅋㅋ....ㅠㅠ
-
다시 자야됨 2
근데 사평우 글 보고 자야됨
-
막줄처럼임 그때는 아무리 힘들고 우울했지만 나에게 빛나는 미래가 있을거라는 헛된...
-
도태도 적당히 돼야지
-
인생계획 2
20대 군대 가고 대학 졸업하면서 돈 5억 만들고 일본 워홀 30대 일본인과 결혼후...
-
세상이랑 내 나이는 흘러가는데
-
공부 시작 2
생2 수특 돌리러 ㅃㅃ
-
잘자 0
일주일 뒤에 올게
-
directly similar, oppositely similar 이렇게 2 종류가 잇음
-
작년애 남은 간쓸개 풀면 되려나
-
웬만한 네임드 아니고서야 댓글이 안달리기 때문
-
롤 서버 터졌네 0
개짜증나네
-
잠시휴식 3
진짜10분만
-
이거받고 가겠습니다 자러
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 아이비"All-seeing Eye,...
-
이제 모밴 아님?
-
??
-
이미지메타 이게 참 신기한가같음 난
-
끝 2
오르비 글 클리너 alpha https://orbi.kr/00071814306...
-
개추 1
이제 모밴 아닌가
-
아무도 모르는 레전드 옯찐따면 개추
-
신입생들 앞에서 광대짓 해야될거같은데 추천좀
-
나름 한국 좋아하는데 부정적인 소리만 들리니까 점점 헬조선으로 보게됨 ㅋㅋㅋ...
-
머리가 아프다 3
배가 아파
-
조리퐁냄새가 나는거지? 땅다라당땅다라랃앋앋땅당당
-
안녕히주무세요 오르비언 11
안녕히주무세요
-
내가 늘그니라 쓸데없이 진지 잡순건가?
-
어디려나요 ㅋㅋ
-
작수 화작2 영어1 무휴학반수임...ㅠㅠ 성적 안 떨어질 정도로 하고 싶은데 기출...
-
기상 10
아나
-
약팔이놈들 판치는 세상에서 ㄹㅇ Goat임 • 간단한 고민들은 무료 상담 • 미친...
-
해보자
-
꿈에선 유명 에피 옯인싸가 되어야지
-
인생계획 2
졸업 ( ~2028 ) 이후 컴플렉스인 부분 성형 살짝 공익 (28~30) 일본워홀...
-
서울대가면연애할수있다그랬는데...
-
진짜 누가봐도 와 이사람은 메쟈의 가겠다 <<이런 사람들 진짜 너무너무 부러움...
-
??
-
안자는사람? 1
손들어!!
-
네
-
미필6수지방의대 vs 미필3수고대기계vs현역중대전전 1
누가 제일 행복할까요? 여러분들이라면 어떤삶을 선택하실건가요?
-
오노추 6
음치(본인)은 못부르는 노래 그래도 부를 줄 아는 몇 안되는 일본노래..
-
시대인재 vod 0
시대인재라이브 vod는 한번 사면 영구인가요?
-
이미지 적어주세요 18
있었으면 좋겠네요.
-
대성패스 공유하실 분~~ 제가 구매 했어요 저는 탐구만 듣습니당 쿠폰 두장 주는거...
-
쌩삼 1
현역정시 44224에서 재수 21232로 마무리했습니다 원서영역 망해서 3떨했는데...
(점A,B고정된 상태.) 중심이 P인 구가 A,B 다 지난다는 말은, PA=PB라는 뜻이니까, 선분AB의 수직이등분면(평면 알파라고 부를게요) 위에 점P가 있다는 이야기지요. (AB의 중점을 지나고, AB에 수직인 평면 위에서 점P가 돌아다니고 있는 거에요.)
벡터PA+벡터PB = 벡터PQ 는 사각형PAQB가 평행사변형이라는 이야기고요(사실 마름모), 따라서 Q도 평면 알파 위에서 돌아다니고 있어요. Q가 O에서 가장 가까우려면 원점O에서 평면 알파에 내린 수선의 발이 Q가 될 때이겠지요. 이 때 PA=QA=PB=QB니까, QA의 길이가 구의 반지름과 같음!
이등변삼각형QAB에서 QA 길이 구하려면, AB의 중점M이라 할 때
QA = 루트(QM^2 +AM^2)
QM길이 구하기 --- OQ // AB이므로 Q에서 AB에 내린 수선의 길이(=QM)나 O에서 AB에 내린 수선의 길이나 같으니, 결국 O에서 직선AB에 내린 수선의 길이 구하면 됩니다. 계산해보시면 QM=2. 따라서 QA=루트(2^2 +3^2 ) = 루트13. 답은 13.
syzy 님 풀이가 가장이상적이지만 조금 다른관점으로도 풀수있겠네요.. 좀지저분하기도하고 허접하지만 .. 한번올려볼께요 완전히 수식풀이라고할까요 ?
벡터PA + 벡터PB = 벡터PQ 를 바꿔요 양변에 2분의 1을하면 AB의 중점을 M이라고 하면 벡터PM=2분의벡터PQ가 되잖아요 그랬을때 M=(2,0,2) 가되요 일단 여기까지 구해놓습니다.
①P=(a,b,c) 라고하게되면 선분PA=선분PB 죠 그식을 세우게되면 a-2b+2c=6 이나올꺼예요
②처음에 바꿔논 관계식을 쓰게되요 PQ의 중점이 M이되는거잖아요 그래서 Q좌표를 구하게되면 Q=(4-a,-b,4-c)가 됩니다 선분OQ의 길이를 나타낼수있고 그식은 루트{(a-4)제곱+(b)제곱+(c-4)제곱}이 되요 그런데 선분OQ 가최소가될때를 구하고자 하기때문에 뒤에 =루트k를 붙여줍니다. 그럼 양변제곱하면 구형식의 식이죠 ?
①②를 모두 만족시켜야하는 (a,b,c)고 선분OQ가 최소가 되야하기때문에 평면과 구가 접하는 형식이되야되요.그런데 사실 접하는것에서 k값을 굳이 구할필요는 없습니다. 왜냐하면 접점(a,b,c)를 구할꺼니까요 위에서 구,평면 막이리저리 말했지만 사실 (a,b,c)는 구와 평면을 모두 만족시켜줘야하는 점이예요 그렇게되면 구와 평면이 접하는 그림을 그린후에 적절히 계산해주면 접점은 (10/3 , 4/3 , 8/3 ) = (a,b,c) 가되겠졍 그르면 이제 선분PA를 구하거나 선분PB 아무거나 구해도 답을 낼수있어요^^