삼각형의 결정(사인/코사인법칙) 35제
게시글 주소: https://orbi.kr/00033062524
삼각형의 결정.pdf
올해 6월 20번, 9월 28번에서부터
사인법칙, 코사인법칙이 교과과정에 없던 때의 문항과는
좀 다른 접근법이 필요한 문항이 출제될 가능성을 느끼셨나요?
그런데 제가 수능이 이럴꺼다 하면 반대로 나오긴 하더라구요.
겨울에 삼각형 문항이 너무 없어서
거의 2주를 박아서 ㅜㅜ 만들어놨던 문항들입니다.
지금 풀기에는 약간 많다는 생각이 들기도 하지만,
시간 들여서 연습할 가치가 있을 것 같아요.
앞쪽의 설명은 제 나름대로 푸는 요령을 정리한 것인데,
이런 종류의 문항이 영 감이 잡히지 않는 경우가 아니면
스킵하셔도 될 것 같아요.
모의고사는 검토 중이고 다음 주 초에 올려드리겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
돈 때문에 진로 선택하는 사람들 있는데 그러면 그냥 의대 가면 됨. 통계 자료를...
-
젭알
-
개념 인강만 듣고 마더텅 풀면 되는건가요?
-
재수 중앙대였는데 너무 학벌 컴플렉스 심해서 연고대 소리만 들어도 움츠러들고 그랬음...
-
갑자기 멍때리게됨 한 40분? 지나면 그리고 약간 알고있는 내용은 생각없이 듣는거같음 어떡하지
-
투과목은 4등급나오는것도 힘들다고 리스크가 너무 크다고 원원으로가자하고 여기선 원원...
-
설광역가려몀 1
수능대략 백분위 기준으로 어느정도가 최초합권~추합권인가요 ㅜㅜ
-
이전 조회수가 뻥튀기였던거 아닌가하는 생각이 드는...ㅋㅋㅋ 그냥 이상하네요
-
계속배고파
-
수학2목표면 현우진 과한가요? 메가에 추천샘있나요? 2
수학2목표면 현우진 과한가요? 메가에 추천샘있나요? 다른과목 할 시간때문에요
-
메인뭐다뇨 ㅋㅋㅋㅋㅋ 12
헐
-
재업이 붙은 이유 : 전에 올린 비슷한 내용의 만화에서 욕설이 적나라하게 들어가있는...
-
현우진 뉴런 필기해야할거 많나요? 필기하는거 싫어해서요
-
근데 뭐요 님 저 아시나요? 저 ”재수생“인데요 ? 남 도울 여유 업ㅎ어요
-
저녁여캐투척 8
명란젓키타
-
한권으로 크게주면 안되나 모든선생마다 매주몇권씩주니 개좆같네ㅅㅂ 내가 존나예민한건가
-
어떤가요?
-
똑같은회사가면 후자가 더 메릿이있나
-
건동홍 컬렉터 3
건동홍 다 모았네 하지만 중대로간다
-
으흐흐
-
터미널 챌린지 6
연습했는데 힘드네
-
오피셜 0
https://youtu.be/VEVqay5q0Io?si=rBhI7P4xm_O1RRR-
-
하
-
할말하않.. 10
-
3개 성공적으로 수집 완료
-
23 6모 국어 언매 선택하고 풀어봤는데 언매 언어에서 4개 틀려서 9점 까이고...
-
당시 수특에 잇엇는데 절대 안나올 지문으로 뽑히다가 나와서 뒤통수 후려갈긴걸로...
-
세월이여...
-
3세트정도 가볍게 풀어야지
-
정말 상당히 아팠음
-
반드시 그 극대점과 극솟점 사이에 변곡점이 있나요?
-
1세 반수 0
1세반수 하려면 수강신청 기간에 온라인으로 1학년 세미나만 신청하면 되는건가요?
-
아 궁디 아파 2
넘 오래 앉아있었나봐 ㅠㅠ
-
전문대에서 학고반수 할려고하는데 교수님한테 미리 말 해놔야함? 어이없는 질문이긴한데...
-
네
-
경험담임
-
말던지 앞에서 말하고 끝내야겠다
-
전에 다니던 스카에 용트름빌런 있었는데 스카 옮겼더니 걔도 곧 여기로 왔단말임?...
-
이과에 1점중반 내신인데 정시에서 문과로 교차지원할시 cc 나올 가능성있나요 ??
-
여기 좋아♡♡
-
ㄷ44집갈째띠지핮시근정도2
-
내가 수학4여서 대학을 못가는 사람인데 3모까지 하나는 확실하게 하고 시퍼서 뉴런을...
-
소로소로 오와리니시요
-
에타에 대거 펑크란 찌라시 어제 봤는데 ㅇㄱ ㅈㅉㅇㅇ??
-
제곧내
-
다이어트 개망했다 그냥
-
일반과 포함해서요 ㅇㅇㅇ
-
연애는 못해도 괜찮음 35
본좌도 연애 못하고 있지만 탑툰과 애니를보면서 사실상 연애중이라 봐도 무방한 심리상태임
-
너무 쳐먹는데 8
가나초콜릿 5개째 먹고있음
-
기숙학원 다녀보신 분들 13
소지품검사 어디까지함?? 필통도 다 열어보고 옷가방안에 들고가도 다 열어보려나
도형때문에 9모 2등급 나왔었는데 ㅠㅠ 감사합니다!!
자료에 대한 피드백을 주시면 감사하겠습니당.
모의고사 올렸을 때도 사실 평가가 되게 궁금했는데,
그런 이야기를 거의 안 해 주시더라구요 ;

자료 잘 보고 있습니댜ㅜㅜㅠ항상 필요했던 부분이었는데 감사합니다!!
나..나형은 안해도되나요?
나형도 풀면 좋을 것 같아용

오옷 감사합니다!
초고퀄 ㄷㄷ감사해용
유투브 잘 보고있습니다. 저번 자료는 확통 n제처럼 진짜 잘 풀었습니다
감사합니당

한성은!한성은!한성은!한성은!한성은!한성은!한성은!한성은!한성은!한성은!감사합니다 ㅋㅋ
유튜브로 잘 보고 있습니다 ㅎㅎ
오, 영광입니다. 3, 4년전 쯤 오르비산 모의고사들을 처음 접했을 때, 똑똑한 사람이 되게 많다고 느꼈는데, 선생님이 그 중 한 분이십니다. ㅎㅎ
오우 제가 더 영광입니다~ 일개 대학생 때 만든 졸작을 칭찬해주시다뇨 ㅠㅠ 감사합니다 ㅎㅎ
고등학교 졸업 때까지 이해하지 못했던 삼각형 ㅠ
국어 선생님이시네요. 사실 수학 선생님도 이해 못해요 ㅎㅎ
문제 풀어봤는데 개조음 ㄹㅇㅋㅋ
감사해용
문제 좋아서 전문항 2회독했습니다ㅠㅠ 감사해요 근데 혹시 13 15 17 18는 다시 풀어봐도 막막한데 혹시 힌트나 커멘트 주실 수 있나요....?
13번 : 반원의 중심 O, 반원과 AE, BE의 교점 각각 F, G라 할 때, 두 직각삼각형 AOF, BOG를 째려보면 각 FAO, GBO를 알 수 있다.
15번 : 반원의 중심을 O라 할 때, 삼각형 APO에서 코사인, 삼각형 AQO에서 코사인.
15번 다른 풀이 : O에서 PQ에 수선 내려서 직각삼각형 분석.
15번 다른 풀이2 : 방멱(할선정리)를 적극 쓰면 개꿀.
17번 : 선분 AB를 1/cos(theta)와 tan(theta)로 내분한 점이 D이다.
18번 : 앞쪽 칼럼에 자세한 설명 있음.
다시 풀어볼게요 감사합니다
13번 문제에서 AOF BOG 길이의비는 구했는데 각을 어떻게 유추할까요 ㅜㅜ
접점들과 중심을 연결하고 직각삼각형 두 개를 째려보시면 됩니다.