커넥팅 모의고사 가형 후기
게시글 주소: https://orbi.kr/00032930493
92점 (28, 30)
제가 평가할 자격이 되는지는 모르겠지만
먼저 문제별로 개인적인 생각을 적어보자면
1~4번 : 틀리면...
☆☆5번 : 한 번은 실수해봤을 로그함수의 진수조건 확인
☆6번 : 전체범위=1
☆☆7번 : 절댓값 생각하지 않고풀어도 풀리는 문제였긴하지만 원래는 생각해야함. 뒤에 문제들보니 일부로 이렇게 내주신것같음.
☆8번 : 정리 잘 하면댐.
☆9번 : 통계단원 기본
☆☆10번 : 기출에 나온 적 있는 문제니 이제는 기본으로 알고있어야함.
☆11번 : 경우의수 기본
☆12번 : 극한 기본문제
☆☆13번 : 굉장히 자주 나오는형태. 시간뺏기지않게 주의할것.
☆14번 : 정리 잘 하면댐.
☆☆15번 : 함수보고 숫자별로 부호 판단->0존재유무 나누기. 계산은 쉽지만 계산 전까지의 과정을 주의할것.
☆☆16번 : 역함수를 직접 구해서 풀었는데 다행히 계산은 깔끔해서 좋았음.
☆☆☆ 17번 : 함수 개형을 찾았으면 50%는 해결. 원점 대칭이라는것 찾았으면 45%해결. 계산은 깔끔해서 5%
☆☆☆☆ 18번 : 계산하기 쉬운개형 하나를 찾아서 ㄱㄴ해결, 근데 마침 그 개형의 넓이가 6이였고 다른개형은 넓이가 더 커지는거같아서 반례를통해 ㄷ을 판단하고 넘어갔는데 사실 이 문제만 운좋게 적용된것같아서 다시 풀어보니 생각하는 과정이 아무래도 ㄱㄴㄷ 문제인만큼 생각만큼 쉽지는 않았음. 20번에 이처럼 교점문제가 나오면 대략적으로 풀면 절대안됨. 무조건 하나하나 정확한 근거를 찾아야함. 정리하기 좋은문제임.
☆☆☆ 19번 : 난이도에비해 시간을 가장 많이뺏긴 문제인듯. 근데 원래 도형문제가 안보이면 못푸는거니 시간 뺏겼는데 계산이 안더럽다는건 좋은문제라고 봐도될듯(도형문제 만드는게 제일 신기함...)
☆☆☆☆ 20번 : 내가 본 정규분포 문제중에 가장 난이도 있는문제였음. 그렇다고해서 너무 되도않는걸 묻지는않고 정확히 본질만을 물어보는문제. 요즘 확통 난이도 올라가면서 이런문제도 충분히 나올 수 있다고 생각함.
☆☆☆ 21번 : 나름 규칙을 빠르게 찾은것같아서 다른방법 생각하지않고 그냥 다 셌음. 그래도 시간 많이 안걸렸음. 난이도는 그냥그런데 문제자체는 처음보는 규칙이라 좋았음.(이런것도 어떻게 만드는지...)
22~23번 : 맞아야죠
☆24번 : 덧셈정리쓰고 계산 잘 하면됨.
☆☆25번 : 상황이 익숙하다면 어렵지않게 풀 수 있는문제. 언제 절댓값이 더 커지는 순간인지 생각하고 공차의 범위만 구하면 풀림.
☆☆26번 : 범위나눠서 계산만 잘 하면됨.
☆☆☆27번 : 각C가 둔각이라는거 생각해서 cos범위 신경써주고 나머지는 sin정리를 통해 계산. 크게 어려움은 없음.
☆☆☆28번 : 케이스분류를 잘못해서 틀렸음... 다시 풀어보니 차분하게 상황판단만 한다면 맞출 수 있는문제.
☆☆☆29번 : 요즘 자주 나오는유형. 확통은 이제 이런걸 잘해야함. 등호가 들어가고 안들어가는것으로 케이스 분류한 뒤 겹치는부분 빼주는 전형적인 문제. 자주나오지만 난이도는 항상 중상 이상이므로 연습 많이해야함.
☆☆☆☆30번 : 시간없어서 못풀긴했으나 다시 풀어보니 시간있어도 풀기 힘들었을듯. a점에서 미분가능성 잊지말고 개형생각하면서 판단해주면 계산은 간단하게 마무리됨. (판단이 어려움)
후기
비킬러는 일부로 힘을 안주신것같음. 준킬러가 상당하기에...
준킬러는 그냥 전반적으로 마음에 드는문제가 많았음. 생각만 잘 한다면 계산은 깔끔하게 다 끝나는 것 같았음.
킬러는 개인적으로 30번 하나같았음 어려움...
최근경향에따라 미적분에서 힘을 빼면서 확통, 수열, 도형쪽에 확실히 힘을 잘 준것같아서 좋았습니다. 개인적으로 계산이 더러운 내신같은 모의고사를 싫어하는데 그렇지 않고 계산은 다 깔끔했던것같아서 상당히 좋았어요.
무료배포 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언제부터 하나요? 재수해서 이제 학교 들어가는데 군대 생각도 해야하고 생각이 참 많군뇨..
-
과학 지문이니까 또 문과 애들이 어렵다 지랄 발광 한거임 반면 그것보다 훨 어려운...
-
https://m.site.naver.com/1Abu2
-
그냥 좆같은거임 4
실패 한번에 사람이 흔들리고 한번 흔들리니 자꾸 부딪히고 넘어져서 몸좀 가누려고...
-
유튜버 442oons 좋아하시는분 계심뇨? 풍자가 재밌긴함 ㅋㅋ
-
지금 생각해보면 순수 실력부족이었던 것을 그 당시에는 실수라고 셀프최면걸면서...
-
전에 비둘기닉 달고 잠깐 활동했었던 사람임. 나름 경제 열심히 했고 잘 했다고...
-
메이플M 1300 지름
-
근데 싸우면 피곤해 그냥 좋아요만 누를 뿐
-
국어 미적 과탐 사탐 다 어렵게 내서 공통으로 봐야함 8
그러면 문과 이과 누가 더 저능한지 잘 알듯?
-
문학의 비문학화는 허상 문학은 문학답게 이런표현 들으면 나 엄청 긁히는거 보면 참 세상일 요지경임
-
마치 이건 님이 20번이 미적에게만 유리해서 틀렸다 주장했던거랑 비슷하다고 11
뭔 느낌인지 알겠음? 핑계대는거임
-
저능한거 알면 자고 일어나서 공부할 수 있도록
-
뭔 일 있음? 11
나 지금 내 옛 대학 후배한테 모든 걸 전수 중임
-
제1탐구 시간만 되면 귀신같이 디버프걸려서 꼬라박고 4등급입갤
-
훅훅 안풀리더라
-
투표
-
서로 사이좋게 물고 뜯어라
-
어떻게 보면 자기 보호임 난 나의 2년이 왜 실패로 돌아갔었는지를 모르겠었거든 그걸...
-
전설로 남은 22수능의 모습 특히 16번이랑 17번은… 지금봐도ㄷㄷ
-
현역이랑 재수때까지 나에 대한 기대치가 너무 높았고 내가 유일하게 쇼앤프루브할수있는...
-
아 1
아..
-
미기확 다 베이스 있어서 기하 한번 해봤는데 미적보다 훨 낫네...근데 만표가...
-
한명 치대고 한명 의대노
-
탐망이긴 한데 1
과탐보단 당연히 사탐이 쉽긴한데 경제를 할 염두가 안나긴했음 쫄렸음 ㅇㅇ
-
경제 앙딱정 4
계산 센스 있거나 과탐 공부하다 왔으면 개꿀 근데 아니면 힘들어요 문과분들 경제 선택 신중하게 하셈
-
경제 관련 논란 2
정법하면 해결됨 ㅇㅇ
-
다음주에 경제공부 해보고 결단내림
-
진정한 저능은 2
동홍 노예비 광탈 노뱃인 나 아닌가?
-
내가 현역때 느껴본 감정이라 아는데 누가 나한테 서성한이면 잘간거지 멀 그러냐 난...
-
불법수익 삭제+10년 정지 착한일 인정?
-
https://m.site.naver.com/1Abu2
-
그건 진짜 기분 나빴던 다른 사람들한테 죄송함... 핑계긴하지만 수능을 망치고...
-
내가 고2때 상담하면서 adhd밝히고 즙 짰는데 나중에~~~종례때 산만한 아이보고...
-
개념이 지1 단원 2개급되는듯 수준도 그냥 다 상식선임 문제들 사고력 많이 요하지도...
-
대학이 본인 마음에 들지 않더라도 객관적으로 상위권 대학이라는거를 자각하고 좀 사릴...
-
나도^^
-
탐구메타라니 0
아이고ㅅㅂ물리야
-
1등급이 왜 47점이야 시발
-
탐장연이 볼때는 탐구로 키배뜰수 있다는게 그냥 부러움...
-
결국 저능하다는 말에 타인이 감싸줬어도 타인에게 받았던 상처를 자신이 타인에게 줄...
-
그래도 우울글 쓰는거보다 나름 공부하는 모습 보여주는게 더 발전적인거 아닌지 싶은데...
-
중립지키겠습니다 4
두분 다 저한테는 호감이여서.. 제발 심각하게 가지말고 화해해주세여..
-
사실 경제 내려치기보다는 자기위안이었음 내가 25수능때 과탐을 선택했기에 수능을...
-
ㅋㅋ
-
싸우지말아요 3
-
이기는 편 내편 3
아무나 이겨라
-
한쪽이 명백한 병신이어도 조금 불편한데 둘 다 대충 이해가는 상태면 더 쉽지않음...
풀어주셔서 감사합니다!! 엄청 자세히 써주셨네요ㅋㅋ
7번은 절댓값 고려 안 해도 풀 수 있도록 의도한 게 맞아요ㅎㅎ 사실 검토에서는 부호가 달라지는 부분이 있도록 설정하는 게 어떠냐는 의견도 있었지만, 가벼운 느낌을 살리고 싶었기때문에 그대로 갔습니다!
18번은 생각보다 자신이 임의로 잡은 케이스의 넓이가 6이어서 넘어간 경우가 많았네요ㅎㅎ 주기성을 생각하면 이렇게 잡은 이유가 충분히 이해가 갑니다ㅋㅋ
28번은 어려운 듯 하면서 어렵지 않은 문항이죠! 발상이 어렵거나 케이스를 많이 나누어서 풀이를 진행해야하는 건 아니어서! 꼬이지 않고 잘 넘어가야한다는 건 있지만요ㅋㅋ
30번은 쉬워보이지만, 드러나있는 정보가 많이 없어서 막힌 분들이 많죠ㅜㅜ 그만큼 나름대로 발상이 너무 힘들어지지않게 해둔 장치가 0~a까지의 f(x)의 개형이긴 해요.. 눈치채신 분은 많이 없다는게 아쉽지만요
후기 잘 읽었습니다!! 감사합니다ㅎㅎ (이벤트는 확인했어요!)
감사합니다! 더 분발하겠습니다...ㅎ ㅋㅋㅋ