고난도 문제 투척
게시글 주소: https://orbi.kr/0003232948
![](https://s3.orbi.kr/data/file/united/237346008_cpjiDRLa_20121122EBACB8ECA09C1.png)
![](https://s3.orbi.kr/data/file/united/237346008_Is1QG5EM_20121122EBACB8ECA09C2.png)
1,2번은 수능4점짜리보다는 어려울텐데 그냥 4점이라고 했습니다. 3번은 아이디어만 있으면 쉽지만 역시 수능에 나올 스타일은 아니니 심심하신 분들 풀어보세요^^ 자작은 아닙니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친한 동생중에 이런애가 있는데 맨날 나한테 하소연함 내가 삼수하긴 했는데 삼수...
-
중앙대라고 생각해요
-
등록포기 질문 0
지원자통합서비스 환불신청 입력해서 처리중으류 뜨면 타학교 등록 가능한거 맞나요?
-
03남친먄들기 3
오빠~
-
한양대 전추 1
오늘은 한양대 전화추합은 끝난건가요? ㅠㅠㅠ 그리고 예비번호 갱신 지금 되고 있는걸까요...
-
4규 엔티켓 빅포텐 중에 고민하고 있어요
-
메가스터디로 국어 '김'동욱 수학 '김'기현 영어 '김'기철 생윤 '김'종익 사문...
-
생윤 임정환 0
사탐런해서 노베고 임정환 듣고있는데 본책이랑 필기랑 너무 다른거같은데 본책만...
-
경희대 호경 2
한 명 빠집니다
-
❗️서강대학교 자연과학대학 정시 새내기를 찾습니다❗️ 0
❤️서강대학교 자연과학대학 (수학과, 물리학과, 화학과, 생명과학과, SCIENCE...
-
3개월만에 다쳐까먹어서 읽을줄만 알지 거의 못쓰네
-
수1이랑 기하는 고1수학으로 보내고 미적 확통에 대학교 1학년 미분적분학...
-
오티 지방이어서 못 갔는데요. 중요한 사항 있었을까요? 신입생 수련회는 꼭 가야...
-
외대쓰신분들 다들 확인 ㄱㄱㄱ
-
세지 생2 6
이상한 조합으로 수능보면 이상한 대학간다는거 ㅇㄱㅈㅉㅇㅇ?
-
면 사수 철회하겠읍니다
-
오늘의 첫끼 0
고기무한리필집 흐흐
-
계정 하나는 메가패스 있고 큐브 학생계정으로 질문하고 계정 하나 더 파서 마스터로...
-
진짜 제발 내일 전화오겠죠???
-
3모 보기전까지 끝내면 괜찮은건가요?
-
1부에서 원딜로 오라고 러브콜준곳 = 티원
-
스카인데 조금 자고싶은데 쳐자면 2시간씩 자서 알림이 필요한데 스카에서 울리면...
-
이거 3등급까지는 컷 진짜 널널함 공부 진짜 안해도 날먹으로 3등급 ㅆㄱㄴ임
-
님들같으면 어디갈거임? 이유도 같이 써주면 ㄳ
-
사진이 도쿄에 있는 짭 자유의 여신상이라 논란이었던 문제 원본 사진에는 뒤에...
-
스카이서성한쪽으로 많이들 가나요?
-
아니면 입학전에 해놓으면 좋은거 추천좀
-
에리카 건축 예비 2번인데 아직까지도 전화가 없음...
-
2026 InDePTh 모의고사 2회차 검토진 모집 0
InDePTh 1회차 검토진 모집 때는 수많은 분들이 지원해주셨고, 그 중 21분이...
-
네....ㅠ
-
오티후기 0
내 사회성이 죽엇단걸 다시한번 확인당함 재수학원으류 돌아가고싶음
-
흠 11
Kold에 물을 탈까...
-
의치도 사탐이 맞제 10
너 국100 수100 아니잖아
-
삼겹살이 다 지면 대패삼겹살인가요 크크
-
연고대가려면 맞아야하는 생지 점수에서 과탐가산점 생각하면 사탐 몇맞아야함?
-
글리젠 레전드네 0
헉
-
마이너스 감수하고 일단 의치 들어가기만 하면 된다 생각하고 사탐 ㅈㄴ 잘하면 가능하지 않나
-
이걸 붙음 노줌스나는 아니지만 그냥 버린다 치고 그나마 될 것 같은데 썼는데...
-
자전의 존재를 자꾸 잊어버림 걍 대깨의치 제외 사탐런이 옳아요
-
컷은 어차피 670언저리로 잡히지않으려나
-
켄황 슈퍼볼 5
에이 마이너어어어어얼
-
내가 누구? 2
“오르비 뱃지 OWNER" (진)
-
680점대 초반이였는데 학부대학 4차불합 ㄷㄷㄷㄷ 원래 이렇게 추합안돌림?...
-
내년에 변표 나오는거 모르는 상태로 사탐런 해도되는건가요? 잘몰라서 질문드림뇨
-
아님간호사분들인가
-
시발점 워크북 6
이거 꼭풀어야하나요 작년에 78점떳고 27 28 29 30못풀었습니다 이거 안풀고...
-
ㄱ
1번 대충 풀어서 10이 나왔는데 보기에 없네요 ㅡㅡㅋ
ㅎㅎ 1번을 저도 따로 풀어본 건 아니고 일반적인 2번 답에 대입해본 거네요. 정신이 몽롱해서 자고 일어나서 생각해봐야겠군요ㅋ
한번 풀어봐야겠네요.
매번 풀어주셔서 고맙습니다ㅎㅎ
으음... 지금 풀고있는뎅.. 1번은 12312454332 인거같아요 (왼쪽에서 6번째숫자)
아. 정답!! 쉽지 않은데 잘 푸셨네요^^ 미분 혹은 삼각함수 a sin x + b cos x 형태의 최대는 루트(a^2 +b^2 )이다를 이용하신 건가요?
네...각 세타잡고 삼각함수에 관한 식 세운다음에 한변의 길이가 최소가 되려면 뒷부분 삼각함수 합성이 최대가 되면 되는것 같더라구요...
근데2번 3번은 너무 어려운것 같아요.. 제실력이 부족하긴하지만 ㅋ 일반화하는게 힘드네요.. 3번도 뭔가 새로운 생각이 필요한것 같은데... 치환이나 부분으로 안될것같구 ㅠㅠ
아니에요. 정말 잘 푸셨어요~ 2번은 계산이 많이 복잡하고 어려운 것 같아요. 3번은 아이디어만 있으면 간단한데 처음 보면 생각하기 쉽지 않은 것 같아요. y=sin x 가 x=pi/2 중심으로 구간 [0,pi]에서 대칭인 것 이용해서 잘 치환하시면 돼요~
3번이 - integral (ln2) dx (구간 : 0~ㅠ/2) 가 나와서 - (ㅠln2) / 2 가 나왔는데.... 보기에 없네요.ㅠㅠ
[조심스럽게].... 혹시 보기에 pi가 빠진게 아닌가 싶기도 하네요.... ^^ 그렇담 ②번이 정답!
아.. 그렇네요.. 님 말씀이 맞습니다. 제가 보기에서 모조리 pi들을 빼고 안 썼군요..ㅋㅋ 지적 감사합니다! 거의 다 맞게 하신 것 같은데 2번이 아니라 3번 아닌가요~ (모든 선택지에 다 pi가 곱해져있다고 생각할때요..)
아.... 3번이 맞네요. 마지막에 2를 안곱했네요. ^^