OIS & 주예지T 9평대비 모의평가 후기
게시글 주소: https://orbi.kr/00032265613
부족한 실력이지만 .. 주요문항에 대한 의견을 남겨보곘습니다.
6번 -> Sn-Sn-1 =an(n>=2) 언제나 초항은 진짜 Sn에 n=1을 대입해서 확인해 봐야 함을 체크할 수 있었습니다.
12번 -> 9평에서 고1과정의 중요성을 엄청나게 강조했었다죠.. 이 문제 역시 고교과정 까먹지 않았냐를 잘 짚어볼 수 있는 문제였습니다.
치환할 때는
1) 항상 치환범위에 유의해야 하고,
2) 내가 최종적으로 구한 값이 치환한 값인지 , 진짜 x의 값인지 까지 확인해서 x에 관한 값으로 다시 되돌려주는 작업까지 되돌려줘야 됨을 명심해야겠습니다.
<머리속에 박아놓지 않으면 수능날 무슨 대참사가 일어날지 모릅니다>
14번, 이번 9평 나형에도 비슷하게 나왔던 부류이죠. [여 사 건]
다만 주의할 점은 X에서 Y로의 일대일함수가 아니라
'그냥' 함수라는거!!! 아무생각없이 풀다 헤매면 안되겠습니다..
15번@@@@@. 멘탈붕괴용 준킬러 수1으로 제격인 문제라고 생각됩니다.
직사각형 이외에는 아무것도 주지 않아서 매우 당황스러웠는데요...
AO=1, 직사각형임을 이용하여 점D에서 선분AC에 내린 수선의 발을H라고 할 때 DH= 1,
OB= HC= (4-b) - log_a 2 등등 표기할 수 있는 것부터 차근차근 표기한 뒤에
직각삼각형의 닮음비를 이용해 미지수들을 밝혀내면 되겠습니다.
18번 @@@ 멘탈붕괴용 확률변수 문제..
Z로의 변환과정에서 부등식을 접목시켜버리다니..
참신하다고 생각했습니다..
사실 시험장에서 이런 문제를 만났다면 그냥 m=1,2,3,4,5씩 집어넣는게 차라리 마음이 편할거라 생각되네요.
표준정규분포 그래프는 0에서 대칭이니까, Z에 대한 부등식들에 대한 부호를 적절히 조장해서
부등식을 한번에 세울 수 있는 아이디어를 위 문제를 통해 얻어갑니다
아울러 대칭성을 활용하는 문제가 9평 21번에 삼각함수 근 찾느데 이용된 만큼
그 중요성이 미적분이든 수1이나 통게파트든 수능에도 강조될거라 예상됩니다
19번.@@@
제2코사인법칙-사인법칙 이 얽히고 얽혀있을 땐 어차피 논술시험보는게 아니니까..
그냥 1-cosx= (x^2)/2 sinx=x , tanx= x 로 놔버리고 방정식 계산한다는 느낌으로
끌고가는게 답인것같습니다.
아울러 1=COS^2(2X) +Sin^2(2x) 로 역추적 하는 마인드는 언제든 준비되있어야겠네요
이 참에 한번더 머리속에 박아놓겠습니다..
또한 해설지의 두번째 솔루션 보조선으로 직각을 그어 AAA닮음(?) 을 찾는 마인드를 챙겨갸야겠습니다
(사실 기하 삼수선의 정리가 시험범위였다면 더 쉽게 떠올렸을 발상이지만
그렇지 않기에, 이런 문제 만날 때마다 틈틈히 상기시켜놓는게 중요하겠네요)
사실상 두번째 풀이가 훨씬 직관적이고 간결하기에 수능전까지 반드시 익혀놔야될 관점이라고 생각됩니다.
21번@@@@@ 미적분과 순서쌍(경우의수) 단원의 결합문제
(작년 or 재작년 9월이였나 평가원 21번에 구현되었던 느낌이 확 와닿았습니다. 물론 그것보단 훨씬 어려웠고요.
케이스를 나눠야 될 게 우선
대전제로 a=b 인지, a=/=b인지 부터 나눈뒤,
a=/=b일 경우, 1) a가 0~-K , b가 0~ K ( 둘이 위치 바꿔도 되니까 X2)
2) a,b가 2K경계 밖에 위치 하는 경우로 나눠서 복합적으로 생각해줘야하는데
사실 현 수능기조에 이런 류의 문제가 나온다면 21번 이상급이라고 판단됩니다만
공부에 많은 도움이 되므로 열심히 학습해 놓는게 좋은것 같습니다.
29번 @@@@ 과거형 수열문제의 복습 필요성.
2010년대 성행했던 수열문제의 전형적인 유형인데, 실제 시험장에서 만나면 매우 두려울 듯 합니다.
x좌표가 일치하게 절대방정식을 세워주면 y좌표에 상관없이 성립하게 되어 어찌어찌 답은 낼 수 있겠다마는.
.. 만약에 y좌표의 조건이 결합되어 (n,m)의 경우의 수를 더 줄였다면.. 정답률은 더 떨어질것같습니다.
30번 @@@ @@@
21,30번은 시간내엔 해결하지못했고 고난도n제 공부하는 느낌으로 천천히 접근해봤는데
그래도 역시 호흡이 매우 길어 적절히 해설을 참조하며 공부했습니다..
주목할 점은 F(x) (f(h(x)) -1/p) =0 이 부분이 아닌가 싶은데.
상황, 조건에 따라 구간별로 나뉘어진 함수처럼 필요한 함수를 뽑아 쓸 수 있다는 게
위처럼 표현된 함수의 큰 특징이라고 생각합니다
이번 9평 20번?이였나. (f-g)^2 =(x-1)^2(x-2)^2 요런 형태의 함수가 주어졌는데
모든 실수x에 대하여 f-g>=0 이어야한다는 조건이 있으므로
f-g= (x-1)(x-2) (x< 1 ,x>2 )
f-g= -(x-1)(x-2) (1<x<2)
요런식으로 내가 필요한 조건에 맞춰 함수를 자유롭게 쪼개서 사용한다는 마인드를 익힐 수 있겠습니다.
방금까지 간략하게 풀어보고 후기를 작성하는거라 다시 복기가 필요한 아주 좋은 시험지라고 생각됩니다.^^
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시즌1 결제할때 보니까 22회차까지로 6월까지 진행하던데 시즌2랑 같이 진행하는건가요..?
-
반수 성공해서 2학기 중간고사만 보고 기말고사 안 봤더니 저렇게 나옴
-
학원만 다니다가 인강을 처음 들어보려고 하는데 듣기 전 문제를 풀고 해설을...
-
현실적인 목표가 이정도일것 같아서,, 백분위 기준 국 94 수 92 영 3 사문 99 지구 96
-
기하 OR 확통 0
올해 수능 다시 볼려고하는데요. 미적분을 했는데 계속 백분위가 85-87에서...
-
코골이 ㅈㄴ우렁차서 한 30붘 잔듯 하 오늘은 철야다
-
엄 0
-
준 0
-
식 0
-
난 초딩때부터 완전 공부 잘하고 예의바른 모범생 이미지였고 실제로도 어느정도...
-
얼버기 10
-
마이린이 이런기분일까
-
먼가 집중이 안되는거 같은데 그렇다고 버스타고 30분걸리는 잇올 가는건 좀 그렇겠죠?
-
안 자 0
아니? 못 자
-
잘 0
자 요
-
운동을 걍 낮에 해야되나
-
https://m.site.naver.com/1Abu2
-
실제로는 안에 있는 cu에서 담배사도 된다고하면서 흡연실도있고 흡연할 수 있게...
-
옛날에올렸던것만올리는추태를용서해다오.. 과외생용이었어서 번호 배점은 무시를..
-
지로함에 잇습니다
-
안와잠와잠
-
걍 놀리고 싶음 울때까지
-
복싱부터 배워야지
-
군수 기균 질문 0
군수에 대해 질문이 있습니다. 지금 복무중인 군인인데요 , 제가 원래는...
-
진정됐다. 0
다 지우고 자야겠다.
-
나에게 항상롤하자고해주는 그분 나애게 할상 달생겼가고해주는 그분 나에게 항상 자기의...
-
뇌 좀 빌려다오..
-
어릴때부터 책을 안읽어서 글을 잘 못읽는데 검터덩 고2 독서로 감 잡아보는거 어떻게...
-
대놓고 호감 말고 보다보니 호감 닉언은 금지니까 비밀임
-
점수를허수로매기면되지않을까
-
어제 오르비 너무 재밌어서 계속하다가 이제야 과외준비하네ㅠㅠㅠ 자구 싶다
-
나를 넘 고평가하네
-
출석도안하는데 덕코1의자리수가왜바뀔까
-
https://orbi.kr/00072166117/%EC%A0%9C-3%EB%AA%A...
-
잘자 6
ㅂㅂ
-
팔로워 팔로잉이 같음 맞팔인 비율도 은근 높음
-
그냥 장난으로 당시 램쥐썬더 레어 뺏은거 뿐인데.. 다시 안가져갔어..
-
쿼터 문과입니다 3
내 안에는 문과의 피가 흐르고 잇음
-
꽃잎이 번지면 1
당신께도 새로운 봄이 오겠죠 시간이 걸려도 그대 반드시 행복해지세요
-
덕코주세요 2
응애
-
이런사람을 보고 천재라고 하는거겠죠
-
밤샘이지뭐 게임오바
-
인문과목 개극혐하고 중학교땐 올림피아드공부/영재고준비 하면서 문과애들 수드라...
-
아잠만이랑 야부키인지 이부키인지..
-
개미털기 왜 안 됨?
-
뭐가 더 레어함?
-
컨텐트관리자님 레어 환불 시스템은 언제쯤??
-
요즘 수면패턴 4
없음 패턴이 없는 여자 패없녀
-
나도 자야겠다 3
새터를 위한 옷을 사기위해서 일찍 자야함뇨
-
요즘생활->새벽4시에 자고 다음날 오후 2시에 깸 살려줘요
안녕하세요! 후기는 이전에 읽었었지만, 이제서야 댓글을 답니다.ㅜㅜ
후기 감사드립니다! 남은 기간 동안에도 성실하게 공부하셔서 꼭 원하는 결과를 이뤄내시길 바랍니다.^^