사관 가형 20번 뭐임????
게시글 주소: https://orbi.kr/00031624148
어그로성 제목 죄송해요ㅎ
사관학교 가형 20번 문제에서
C를 구하는 방법에 대해 물어보는 글도 종종 보이고
푸신 분들중에서도 c값을 그저 왼쪽 그래프의 극대와 오른쪽 그래프의 극소가 일치하도록 찍어서(?) 푸신 분들도 많이 보이더라구요
그래서 왜 c의 값이 e가 될 수 밖에 없는지 풀어봤습니다
참고 해보세요~~
b의 값과 정답을 구하는 방법은 이것만 알면 다 하실 수 있을거 같애서 따로 안적었어여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고3 현역이고 고1때부터 한 번도 변함없이 국어 5등급이었습니다. 이번 3모도...
-
현우진 말대로 공통 19번까지 못 풀면 뉴런말고 기출 풀까요?
-
기상 0
-
릴스 10분 강제 시청 ..
-
내가 개임.
-
그냥 잠 깨고 1
메이플이나하죠
-
충치 있는 이빨 슬슬 아프네잉
-
아
-
뻥임
-
206일 남았다 0
곧이다 곧,,,
-
괴테의 색채론 - 수특 독서 실전편 제1회 4~7번 0
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은...
-
오늘 아침은 라면이나 부숴먹어야겠다
-
시발..
-
얼버기 7
-
앙 인정경석 개꿀띠
-
패턴 복구 완료 2
이젠 쉽다
-
삐질삐질;;;;
-
레전드 기상 2
다시잘까
-
홈스윗홈 2
-
레버기 0
부지런행
-
친구한테 쓰려했는데 인편 서비스 종료했다고 뜨네요ㅠㅠ
-
왜냐면 월요일임
-
빅뱅 블루 2
-
스벌..
-
사람이 어떻게 매일 지각할수가 있겠음 그쵸
-
감기인채로 등교 2
-
좋은아침 8
와… 어제 일찍 잘 걸
-
ㅇㅂㄱ 1
피곤하지만 힘내보자
-
무슨 강의 런닝 타임이 6시간이지 하루종일 국어만 하는 수준이누
-
어떤 거 가장 추천하세요?
-
수급자 메디컬 0
평백 몇 정도 나와야 가능한지 아시는분… 제발요… 인증 가능하시면 치킨 깊콘 드려요…
-
사탐런 2
국영수 422 정도 나오는데 생명 사문 하다가 생명 도저히 아닌거같아서 생윤으로...
-
드디어 백가인 4
기필코 백가인 이게 옳게 된 세상이지
-
셤공부는 3
해도 불안 안하면 편안 뭐 아는게 없는거 같네
-
학교 출발 0
오마갓
-
예전에 증명 어떻게 하는지 알았는데 까먹었어요 증명 필요없으니까 그냥 씁시다.
-
지금까지 안잠 3
아니 사실상 못잠 코딩과제 좀 뭣같아서
-
그리고 잠이 오지 않는다면 자지 않는다 패턴이 아주 멸망햇군
-
새르비언 0
잘자용
-
에후 5
재미가 하나도 없농
-
이래야 스트레스를 안 받을것같아
-
자신이 없다. 5
시험을 못 칠 자신이
-
보르코딜로포르콸라 에르 코ㅓㄹ로미로 포퓨ㅢ토크ㅏㅗ루저오사주스기미자으
-
사반수해볼까 0
시험 공부하다 현타오고 갑자기 든 생각 여기도 오랜만이네요
-
정운오 딱대 1
학교에 새로 생긴 건물인데 짱좋음요
-
정말 무서운건 1
오전 시험이 영어고 오후 시험이 생명인데 나는 생명 ppt만 보고잇다는것임
-
내일 시험인데 공부하나도안함... 유급당하는거아니겠지 출석과제는 다하는데
-
오늘 ㅇㅈ 5
-
본애니 9
별로없음 + 원펀맨 암살교실 프리렌 보는중인건 소녀종말여행 아베무지카...

ㄹㅇ 아이디어 엄청 참신했음저도 처음에는 막막했는데 저 그래프를 그리니까 알겠더라구요
(나)조건 때문에 그렇습니다.
계속 증가하거나 감소해야되는데, 대강 보면 당연히 계속 증가해야됩니다.
그러면 2차함수입장에서 조건을 세우면 c<=3e/a가 되고, (증가조건에 따라)
Ln함수 입장에서 조건을 새우면 c>=e^3/a가 되는데
3/a=t로 두고 e^t와 et그래프를 그리고 c로 가능한 영역을 표현하면 c에 속하는 영역이 t=1일 때 밖에 안됨을 알 수 있습니다.
이게 놀랍게도 같을 때만 만날 수 있습니다.
이런 내용 맞나요 어디서 퍼온거임
제가 직접 풀었습니다...ㅎㅎ
제대로 이해 하신 것 같네요
처음에 부등식인데 어찌 값을 특정할지 엄청 막막했던 기억이..
그렇죠...저도 직관으로 풀고나서 증명을 한거라
역함수를 가지려면 일대일대응을 만족해야 하는데 x>=c, x 극값이 x=/c에서 존재한다면 구간 열린구간 (무한, c) (또는 [c, 무한)) 에서 최솟값 또는 최댓값을 가지는데 이는 역함수를 가진다는 조건을 만족시킬 수 없음 -> 따라서 x=c일때 극값을 가짐
대충 이런 식으로 생각했는데 괜찮나요??
음...제가 잘 이해를 못하겠는데 좀 더 자세히 얘기 해보실래요??