[가형] 따끈한 기벡 투척
게시글 주소: https://orbi.kr/0003140704

약 1시간 전에 만든 ㅎㅎ 뜨끈뜨끈한 문제에염
오류 점검을 별로 못해서 .. 혹시나 오류 있으면 말씀해주시면 수정하겠슴다 !
헷
문제를 이미 푸신 분들을 위한 Tip
이 정팔면체에 외접(?)하는 사면체를 찾아보세요 ㅎㅎㅎ 이 문제는 사면체에서부터 출발했습니다 !!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
끝낼사람있을까여 원래 정병훈 12강이여서 빨리 볼수있었는데 인강 이제 안하셔서...
-
잘해본적이 없어서 모름
-
수학을 잘함
-
질문 받습니다. 3
걸그룹 마스터 야구 중독자 (32년 무관 팀 팬) 오르비 경력 6년 (첫 계정 2018년 가입)
-
무물보 1
심심
-
요루시카 유이카 요아소비 유우리 바운디 하게단 좋아하고 아도 노래는 잘 안맞습니다...
-
전 모르죠 다시 나가세요
-
볼펜으로 품 개머시써 진짜
-
집 가는 중이에요... 10
오뿌이 여러분 오늘 하루도 잘 보내셨나요!! 이제 날씨가 풀렸는데 연휴때 놀러가보는건 어떨까요
-
에리카 경영학과 전화받으신분 있나요ㅠ 지금 예비2번에서 1번됐는데...
-
못 정하겠습니다………….김기현샘 풀커리긴해요 수1만 교재가없어서 고민중 분량 적은걸...
-
드릴 살려고 하는데 드릴드1,드릴드2,드릴5중에 뭐 살까요? 드릴6은 할 예정
-
작년에 괜히 우승한게 아니네 압도적이네요
-
지우는거 그거
-
하이 2
-
참고로 전 고딩임
-
지하철 2정거장차이 집앞에서는 13만원받더라(11도있었음) 종로에서 현금박치기 7.5에 구함
-
개념인강+마더텅 끝난 상태임니다
-
의대 반수생분들 7
만약 이 사태에서 의사가 져서 최악의 결과를 맞거나, 증원은 막았는데 필의패가...
-
작년 수능 2등급이에요(3개 틀림) 상반기에 대성 듣다가 7월달부터 학원 가서...
-
유대종쌤 OVS강의 없이 교재만으로 공부하는거 아떤가요? 0
제가 메가패스만 있는데 메가에 ebs로 맘에 드는 쌤이 없고 ovs가 교재가...
-
정지안선생님의 영어 독사과 강의를 듣고나서, 수능모의문제 해결능력이 많이 향상됨을 체감합니다.
-
사실 이미 그렇게 살고 있어요 3일간 삼만원 정도 벌었어요 궁금하시다면 쪽지나...
-
추가모집 잘아시는분 없나요 저 이거 아니면 복학해여하는데 후 ㅠㅠ
-
어디가는게 좋을까요?
-
샹 어케 하는 거냐
-
강대는 전액장학이 되는데 강남하이퍼는 본원은 50프로, 의대관은 30프로 밖에...
-
부제: Re:제로부터 시작하는 문과생활
-
함량 드립 못치니까 다음은 원료 드립칠듯 ㅋㅋ
-
수2 푸는법 10
야수의 심장으로 개형을 하나 찍는다 쭉 계산한다 답이 안 나온다면 문제를 찢어서 버린다
-
수잘싶 9
ㄹㅇ
-
김승리 허슬 0
허슬테스트까지 같이 사야됨??
-
여러분 여름대비 다이어트하시려면 지금시작하셔야됨니다 2
나중에 가서 갑자기 빼려면 건강망쳐요 저도 한달 쉬었는데 오늘부터 하려구요
-
앞으로 과목선택 관련 질문은 답변드리기 어려울 것 같습니다 15
안녕하세요, 물개물개입니다 오르비 활동을 시작했을 때부터 지금까지 탐구 과목을...
-
올해 중앙대 신입생입니다 현재 에타 재학생 인증이 안되었는데 (신입생 인증은 됨)...
-
하루 다 날렸네 에효
-
사탐 백분위 98 vs 과탐 백분위 96 이면 과탐가산점때문에 과탐이합격함?? 아님...
-
의문사<<<나말하는건가 12
뭐노
-
물론 적당한 목표에 적당한 대학에 적당한 과면 상관없지만 목표가높으면 예를들면)...
-
tim 2
사랑합니다 노래 들어보셔요 좋음
-
사회문화 기출 0
평가원만 모아둔 문제집있나요
-
임정환 서브노트 1
어떤 용도이고 유용한가요?
-
TIM질렀다 2
모고 7개 하프모고 7개 김승리식빨더텅 다합쳐서 6만3천인데 안살이유가 없었잖아 생각해보면
-
교차세대보다 대학가기 훨쉬웠나?
-
기출이 너무 중요할 거 같은데 그래도 n제 넘어가야 하나요..ㅜㅠ 고2 모고는 3요..
-
한자 교재 추천 9
마법천자문 이거면 다 끝나는데 뭔 ㅋㅋㅋㅋㅋㅋㅋ
-
롤붕이라 울었다... 사는 김에 수능도 다시 보고
-
전문직 시험 준비하시는거면 몰라도 수능은 총무 진짜 안 맞는 것 같아요 일단...
왔어요~~~히히
왔구나 !! ㅋㅋㅋ 낼 모의고사라구 ?? 잘칠거야 ㅋㅋ 내가 수호해줌 ㅇㅇ
오셨군요ㅎㅎ
어제 날짜를 10으로 나눈 수인가요? 12시 넘었으니.. 직선l은 OA랑 평행이고 직선m은 OC랑 평행이군요ㅎ
형님을 진심으로 존경합니다 ㅠㅠ;;; ㅎㅎ
정답 !!!!
답 쪽지로 보내드룠는데;;힝
미안행 ㅠㅠ 오르비가 지금 엄청 느린듯 ;;;
정답이야 !!! ㅎㅎㅎ
풀어볼까여??
네네네 ㅎㅎㅎㅎ
이렇게 수학에 열정 있는 분들을 보니 존경은 제가 표해야 옳은 것 같아요^^ 문제 하나 만드는 것도 엄청 힘든데 히융님 시험 앞두시고 대단..^^
아 ... 혹시나 ... 저를 수능 앞두고 뻘짓을 일삼는 잉여로 아실까봐.... 저 다른 과목 공부도 열심히 하고 있어요 .. 엄청ㅠㅠ
문제 만들기는 수리 기출 분석 및 정석 review 시간에 ... 헤헷 재미있어서 중독될거 같아여 ㅋㅋㅋ
형님 짱 ....ㅎㅎ 저번에 제가 맘대로 풀었던 문제 수정해줌..히히ㅠㅠ
ㅎㅎ 저 말씀이신가요? 언제 그랬는지 기억이 잘 안 나요. 님 작성글 찾아봐도 없고.. 아닌가..ㅋ 아무튼 즐겁게 풀어봅시다ㅎㅎ
ㅎㅎ 형님이 저번에 그 머였지....아 특이 적분 그것으롷ㅎ
힝...안 보여요 어헝~~~;;
히히 검색으로 가렸군;;;ㅎㅎㅎ
답 5인가여?
전 직선 l을 직선OA
직선 m을 직선OC로 대체해서 생각했는뎅
딩동 !! 시간되면, 위에 검은색으로 가려져 있는 퀴즈 풀어보세영 ㅋㅋ 재미있을거임 ㅇㅇ
가장 변의 길이가 짧은 정사면체여야 하나요?
네네네 !!! 아 .. 역시 단박에 알아보실 줄 알았어요 ㅠㅠ 대단하심 !!
사면체 가지고 장난치다가 이거 발견하고 또 도서관에서 소리 지를뻔했어요 ㅋㅋㅋ
아 아직 잘 모르겠는데..
OAB 포함 평면을 밑면으로 하는 정사면체 생각해보니 OCD가 정사면체에서도 정확히 옆면이네요ㅎ
맞아요 맞아요 바로 그 정사면체 입니다 !!!
정사면체의 각 변의 중점을 모두 이어서 만든 정팔면체가 바로 문제의 팔면체 입니다 뙇 !!!!!!
따라서 직선 l과 m은 정사면체의 꼬인위치에 있는 두 변을 포함하는 직선이져 ㅎㅎ
앗 정말 그러네요..ㅎㅎ 신기하게도 딱.. 많이 배워갑니다~^^ 님 덕분에 즐겁게 문제도 풀고 공부도 많이 하고 정말 좋네요~
꺅 감사합니다 !!!
근데 밑에 글에서 ... 경시대회 문제 ,, 에 대해서 공부 방향 조건 같은것도 해주시고 .. 굉장한 분 같아요 ...
syzy 님은 제 머릿속에서 이미 교수님이에여 ..
헐 아닙니다.. 원래 잘 모르는 애들이 꼭 아는 체 하잖아요..ㅋㅋ ㅜㅜ 실제로 제대로 할 줄 아는 건 거의 없어요.. 여러모로 히융님이 훨 대단하세요~ 근데 어쩌다보 여기서 이야기꽃을 피우고 있군요ㅎㅎ 저도 문제 좀 내볼라 했는데 문제 만들기 너무 어렵더군요.. 수능 유형도 잘 모르겠고요ㅋ
하 저는 좌표잡고 평면의 방정식을 이용해서 풀었네요.. 문제 출제의도에는 벗어났지만 위엣분 댓글을 보니 답은 맞은거 같아요 ㅠ 좋은문제 감사드립니다!ㅎㅎ
오오 이렇게 푸시는 분 계시지 않을까 생각했는데 ㅎㅎ 요기잉네여?!! 식이 엄청 복잡해질 거라 생각했는데 .. 계산력 대단하세요 ㅠㅠ 부러움 ㅠㅠ
문제 푸는 시간 단축하시려면 위에 분들이 푸신 방법도 한번 연습해보시면 좋을 거 같아요 ^ ^
히히 저도 평면의 방정식 이용했는데... 하나 구하고 나머지는 대칭이용해서 법선벡터가 금방 나오드라구요. 그럼 겜 끝 히히
아 의외로 좌표 대입해서 푸는 사람이 많구나 .... 또 하나 배움 ... ㅎㅎ
원래 의도는 이과지방치님이 푼 방법입니당 !
딱 1시 전까지만 하구 꺼야지~~히히
안녕히 주무세요 쪽지 보냈어요~~
정말 이런문제들 잘 모아서 잘사용하고 있습니다.
감사합니다.
어떤 문제집에서도 찾을수없는 최고의질을 갖춘 문제들이니
그저 감사.
물론 항상 출처는 밝힙니다.
ps: 정삼각형 oab 를 한면으로하는 정사면체 4개 모아서 적절히 붙인 큰 정사면체지요?
각을 재보면 코싸인이 1/3 하고 -1/3 나오니까 휘어지지않고 매끄럽게 연결되는
진짜 정사면체겠네요. 대단하십니다.^^ 좋은대학 가셔서 울나라 빛내주시길....
우와 .. 어딘가 다른 곳에 저의 미천한 문제를 써주시다니 !! 감사합니다 !
최고의 질을 갖춘 문제라고도 해주시고 .. 황송하게 .. ㅠㅠㅠ 올비분들 너무 친절해서 좋네요 ㅎㅎ
말씀하신 크기의 정사면체가 맞아요 ^ ^ 삼각형 OAB를 한 면으로 하는 정사면체를 문제의 팔면체에다 적절히 붙이면 나오는 ^ ^
그렇게 하면 한 변의 길이가 2 인 정면체 ㅎㅎ
우리 나라를 빛낼 사람은 못되구요 ... 저 .. 일단 입시에 성공해서 칙칙한 제 인생부터 밝게 만들어 보겠습니다 ㅋㅋ
오~ 문제 좋아요 ㅠㅠ
평면 축소 개념 쓰면 쉽게 풀리네요 ^_^ 알파 45도 베타 90도 맞나요? ^^;;
지금 재종반 끊고 혼자 공부하는데 이런분들 덕분에 문제 부족할 날은 없네요 ^_^ 감사하단 생각뿐!
답 정확히 맞으십니다 !! ^ ^
그런데 ... 펴,,평면 축소 개념이 뭐져 ...
제가 놓친 개념인가 해서 사전(정석 ㅋㅋ) 뒤져봤는데 ... ㅠ 안나오네요 ㅠㅠ 어떤 개념인지 설명해주실 수 있나요 ..
어감상 평면을 필요한 부분만큼 잘라서 생각한다는 말 같기도 하고 .. 3차원 공간을 2차원으로 축소해서 생각한다는 말 같기도 하고 ..
평면을 필요한만큼 자르는 개념맞아요!
님 전 그냥 직선 엘 이 직선 OA 이고 직선 m 이 직선 OC 라고 하고 풀었는데 이거 맞나요?? 답은 5나왔구요 각도는 알파가 45 베타가 90 도 나왔어요
평면 OAB 와 평면 O프라임BC의 접선 구할때 우선 OAB 의 평면위에 있는 직선들중에 O프라임BC의 직선과 겹치는 직선을 찾으면 될것같아서 OA 로 했는데 이거 풀이방법 맞나요?
네네 빠른 시간 내에 가장 효율적인 방법으로 문제를 풀기에 딱 적합한 방법이
하르바님이 말씀하신 그 방법이 맞습니다 ^ ^
위에 검은색으로 가려져 있는 퀴즈도 한번 풀어보시면 재미있으실거에요 ㅎㅎ
이 문제의 탄생 배경이 들어있거든요 ㅎㅎ그럼 직선 l과 m이 의미하는 게 어떤 건지 딱 알아차리실 수 있으실거에요^ ^
저는 친구하고 일등급 수학에서 나온 문제 풀어보다가 비슷한 거 만나서 직접 잘라서 붙이고 만들어보기도 했다죠. 진짜 매끄럽게 붙더라고요 ㅎㅎ
우와아 ... 열정 !!!!! 실은 저도 ㅋㅋㅋㅋ 정사면체랑 정팔면체 한 번 오려서 만들어봐??? 고민 하다가 .. 포기했는데 ㅋㅋ
대단한 실천력이시네요 ^ ^b
답은 5 ㅋㅋ
계산으로 풀었네요
다른분들 풀이좀 배우고 가야겠네요
직선 l을 직선OA로 대체한다는게 평면 OAD와 평면 O'BC가 평행하기때문인가요??
네 ^^ 정확히 말하자면 두 직선이 같은 직선은 절대 아닌데요,
문제에서 요구하는 게 직선과 평면 사이의 각도니까
평행한 직선과의 각도를 구하셔도 상관 없기 때문입니다 !! ㅎㅎ
굳
퀴즈 답~
혹시 길이가 2인 사면체의 모든 변의 중점? 그거 이으면 나올것 같아요~
아 여담이지만 나중에 문제집 내셔도 매력넘칠듯요 ㅎㄷㄷ ㅋㅋㅋㅋ
정답입니다 !!!ㅎㅎㅎ
문제집 출판할 실력.......... 전혀 절대 네버 에버 못됩니다 ;;;
헤헷 높이 평가해주셔서 감사합니다 ㅠㅠ
용기백배♥