[가형] 하루에 한 문제씩 투척ㅋ
게시글 주소: https://orbi.kr/0003139306

남아있는 문제가 25개 정도 되니까
저질문제 제외하고 수능전까지 하루에 한 문제씩 투척...하면 풀어주실꺼져 ?? ♥
이런 쌍방향 커뮤니티 느므좋음 ㅋㅋㅋㅋ
딱 보면 아시겠지만, 사람마다 풀이법이 여러개 나올 수 있는데요
그 중 가장 간단하게 풀리는 건 어떤 방법일까요??
저도 나름 고민한다고 했는데, 왠지 저보다 더 간단하게 푸시는 분 나올거 같아서
기대중입니다 ㅎㅎ 우왕기대기대''
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1 20
-
맞나
-
공부하기 시러 ㅗㅗㅗ
-
난 어딜가나 호감인데 10
ㄹㅇ인데
-
사문 기출문제집 1
사문 개념 검더텅으로 기출 1회독하고 복습하면서 기출회독 하려는데 회독할때는 무슨...
-
내 게시글에 댓글 달아주는 사람
-
궁금쓰
-
킥오프 쎈 1
고2 정시파이터 파데 -> 킥오프 다 풀고 워크북 얼른 끝내고 어삼쉬사 하려는데...
-
요즘 오르비는 뭔가 일러투척하기 꺼려짐 ㅆㄷ농도가 많이 낮아진것같음 ㅆㄷ프사는...
-
옯붕이들 잘자츄 11
내 꿈 꼬츄 굿나잇츄
-
오르비의 정상화는 대킹버드 아 젖지의 횡포에서 불쌍한 우리 중생들은 구원해...
-
기하미만잡 4
가하가짱임 그냥
-
하 이제 과제해야해
-
ㅈㄴ떨린다 0
-
너무 졸ㄹ령ㅛ 9
-
통계파트가 가장 어렵지않나요?? 개념은 되게 고차원적인것가튼데
-
옯비미남미녀 15
알려줘요 팔 하러 가게
-
따흐흑
-
역시나 인수단위로 묶으면 계산 귀찮을 것이다. (전개하고 적분)그냥 전개식으로...
-
애니추천좀 8
오등분의신부,그 비스크돌은 사랑을 했다, 어서오세요 이 실력지상주의 교실에,...
-
1년 반 전쯤 먹던 약이 남아있는데 1년동안 그냥 백수로 있었어서 안...
-
그냥 태어났을때부터 속눈썹이 선천적으로 그 여자애들 속눈썹 올린거 처럼 올라가있음;; 나만 그럼??
-
추가적으로 이정도를 풀수 있을정도면 수능때 1은 걱정 없을까요?
-
야! 5
너 전화받아!
-
아 4
졸려
-
국어 강사 추천 10
지금 고2고 국어풀때 보통 그읽그풀로 푸는 편입니다. (구조독해로 푸는거 한번도...
-
말로는 설명 못하는 묘한 끌림이 있는 사람이 있단말야
-
2018 LEET 결혼을 하면 자연스럽게 아이를 낳지만, 아이들은 이 세상에...
-
3모 성적 = 수능 성적이다. 탐구 한두등급 오르는 정도. 오르는 학생은 진짜 극소수라고 봄.
-
이거 왜 다시 원래대로 안 바뀜? 진짜 모름
-
이럴 리 없어
-
수업이나촬영하자 14
하아...
-
관독에서 쪽지 3
보내볼까..
-
[국어 3모 33번] 본문을 최대한 직관적으로 읽는다면? 0
안녕하세요, 국생국사 현입니다. 손해설 글에서 언급했던 것과 같이 33번 문제에...
-
사실 잘하는 사람들은 다 자연스러울 듯요유동적으로 다항식을 세팅하자예제)f는...
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
아 거울봤는데 12
ㅈ빻았다 의대가야겠노 갈수있나
-
매해 점점 폐쇠적으로 변해가는 듯
-
다니는 독서실 (잇올같은데에요)에 좋아하는 딴 학교 분이..있는데 서로 친한 사이도...
-
ㅋㅋㅋ 3.5는 넘어야 제약회사 취업이 된다고? 우리과 3.5가 상위 40프론데.....
-
누가 더 연애하기 쉽다고봄?
-
개화 지문 4
이거 그냥 눈알 굴리기로 푸는 지문 맞죠? 이해가 가능함?? 글이 ㅈㄴ 뚝뚝 끊김 ;;
-
어떤 질문이든 좋습니다
-
Kbs 좋아요? 8
그 애니메이션 진짜 효과적이긴함? 애니메이견 볼빠에 수특 몇번 더 본다는 소리가 있어서..
-
뭔 오르비야.. 0
공부나하자
-
국어 풀다가 막히는 순간이 올때 이 전략을 암기하고 잘 사용하도록 합시다. 핵심은...
-
겨울동안 뉴런 수분감했는데 이게 예상하던 점수가 아니라 (미적 72;;;하 ) 원래...
-
파마늘 2
-
그 각각의 사람에게서 나오는 분위기라는 게 있는 듯.. 나도 당장 정량 요소만...
아참 참고로 제가 만든 문제 옆에 있는 [4점] 은 신경 안쓰셔도 됩니다 ㅋㅋㅋ 저건 그냥 제가 저한테 주는 선물임 . 모든 문제 옆에 4점이라고 적혀잇어여 ㅋㅋㅋㅋ 문제 만드느라 수고했으니 4점 뙇 ㅋㅋ
줄리엣 님이 없는 동안 님 문제를 재밌게 풀고 갈게요~~히히
아 근데 진짜 발상 좋으시네요 ㅠㅠ 부럽네요 ㅎㅎ 현역인데 저는 이렇게까지 못함요 ㅠㅠ;;;
제 발상이 아니라 ... 평가원 발상을 훔ㅊ....
ㅋㅋㅋㅋ
현역이면 대단하신거져 !!! 전 현역때 수학바보였는데여 ㅋㅋㅋㅋ
히잉 답 쪽지로 보냈는데 ㅠㅠ
원점을 중심으로 양의 방향으로 45도 회전그러니까
예전 기출이 생각나네요.
오오 딩동 !! 제가 ... 창의적인 생각을 해 낼 머리는 못되어서 늘 평가원 핵심 아이디어를 베껴다가..ㅋㅋㅋ
실은 제가 첨 문제 만들기 시작한 이유도, 평가원을 정복하기 위해서였거든여 ㅋㅋ
이거 근데 완전 옛날 문제 아니에요? ㅎㅎ 제 기억으로는 이거 정석에도 있었던 것 같은데 히히
맞아여 맞아여 ㅋㅋㅋㅋ 호랑이 담배피던시절 문제에요 ㅋㅋㅋ 정석에서는 45도 회전시킨 곡선이 함수가 되게 하는 조건을 찾는 문제죠 ㅋㅋ 그건 오묘하게 역함수로 바꿔서 어제 올린 문제에서 써먹었어요 ㅋㅋ 이건 약간 변형된 유형이구요 ㅋㅋ
히히..정석 푼지 좀 오래되도 이 문제는 기억이나요 ㅎㅎ
40먖나여 ㅋ
네네네넹 딩동댕동딩로다ㅕ릳데
정답입니다
전걍 역행렬해서 구햇는데
그래프를 이용해서 푸는게 의도신가여??
제가 의도한 것은
역행렬과 그래프를 적당히 섞어서 이용하는 거에요 ㅎㅎ
f(x) 그래프 자체를 돌리면 귀찮아지잖아요ㅎㅎ
그러니까 g(x) 위의 (-4, 6)이 원래 f(x) 에서는 어떤 점인지 역행렬로 알아낸 다음
f(x) 그래프에서 x축과 y축을 -45도 회전하는 거에요 그러면 x=y, x=-y 가 축이 되겟져 ??
그런다음 접선과의 교점을 구해서 푸는 방법입니다 !!
하지만 왠지 더 멋진 방법이 뚜둔 등장할듯
아 비슷하네여 ㅋ 저도 걍 어떤점인지 구해서
도함수로 직선식구하구 직선을 걍 돌렸어요
좋은문제 감사드려요 전이만 ㅋㅋ
히히 내 풀이~~ ㅠㅠ same ~!! 근데 다른 방법이 또 있나요?ㅎㅎ
저도 이과설경님이 말씀하신 방법이랑, 제가 설명한 방법
이렇게 총알 두 발 밖에 장전 못했네여 ㅠㅠ
저랑 생각이 비슷하신듯!ᄒᄒ
저도 일차변환 역행렬로 원래 함수에서의 접선 기울기 구하고,
탄젠트 덧셈정리로 45도 회전한 곳에서의 접선 기울기 구한후 주어진 점으로 직선식 만들었어요!ᄒᄒ
아 .. 탄젠트 덧셈정리 !!
새로운 풀이법 추가영 ~ ㅎㅎ 감사합니다 ^ ^ 얼른 해봐야징
제가 생각할 수 있는 가장 간단한 풀이였습니당..ᅲᅲ다른분들 풀이도 궁금해지네용!
오호 ㅋ 묘하게 쉬운것같기도...
네넹 어려운..문제는 아닌거 같아요 닳고 닳은 유형이져...ㅎㅎ
ㅎㅎ 그래도 수능 직전에 다시 복습하는 기분이라 좋네요 ㅋ_ㅋ 감사함니당!
전 평가원 문제 변형 시키는 것을 하다가 ㅠㅠ .... 왠지 어떤 문제 끌려서 하려다가 시간 다 버려서 걍 그 떄 포기했네요 ㅠㅠ
괜찮아여 괜찮아여 우리의 목표는 수능 잘치는 거니까 ㅋㅋ 문제를 만드느냐 마느냐는 하나도 안중요함
수능 잘치면 그게 갑 !
저도 이걸 역행렬로 풀었습니다만 제가 그림을 잘 못그리는지라 그래프는 그려보지도 않고 그냥 풀었네요. 제가 푼 방법은 이렇습니다. 우선 45도 돌리는 거의 역행렬을 구한다음 그걸 통해서 x와 y를 x" 와 y" 로 나타냅니다. x=√2/2(x" + y" ) , y=√2/2(-x"+y") 이네요.
쓰기 귀찮으니 루트2/2 x" 는 걍 A로 루트2/2 Y" 는 B로 치환하겠습니다. 이러면 X=A+B Y=-A+B 네요. 이걸 위에 식에 대입하면 (A+B)^3+3(A+B)= -A+B 이고 쉽게 나타내면 (A+B)^3=-4A-2B 네요. 이걸 미분 하면 3(A+B)^2(1+dx/dy)=-4-2dx/dy 구요. 이거에 저 위의 -4,6 좌표 넣어서 dx/dy 구하고 기울기 구했으니 또 저 좌표 이용해서 직선의 방정식 구했습니다. 조심해야 할건 -4와 6을 그대로 넣는 것이 아닌 루트2/2를 곱해서 넣는거정도일까요.
써놓으니 굉장히 복잡해 보이는데 실제 해보시면 조금 더 간단할지도.... 저한테만 그런건가요.
오옹 !!! 이렇게 푸시는 용자가 나타날 줄 알았어여 ㅋㅋㅋ 전 이 방법 엄두도 못내봄 ㅠㅠ
전 계산이 조금만 복잡해져도 실수남발하는 실수기계거든여 ㅠㅠ
대신 그래프로 표현하는 건 비교적 자신있는 편이라 x축과 y축을 회전시키는 방법을 선택했구요 ㅎㅎ
사람마다 선호하는 게 다르니까 .. 님이 가장 편하게 풀었다면 그게 정답이겠죠 ^ ^
자세한 풀이법 감사합니다 ㅠㅠ ♥
a=4/5 , b=1인거죠?ㅎㅎ 오늘도 멋진 문제 정말 고맙습니다^^ 히융님 덕분에 수학에 대한 감이 살아나고 있는 것 같아요!
네넹 님은 언제나 옳아여 ♥ ㅋㅋㅋㅋ
저 덕분에 감이 살아나시는게 아니라.... 원래 무시무시한 수학괴물이신거 가타염... 헤헷
근데 x y 를 회전시켜서 x' y' 으로 나타내면 -4/5 랑 -1 나오지 않나요?
40...맞군요 ㅠㅠ탄센트덧셈정리밖에못쓰겠네요 ㅠㅠ
여기 님들이 멋지게 풀어놓은 걸 주워담으시면 되여 ㅋㅋ
전 제가 만들어놓고도 올비 분들 풀이법 보고 배우는 중이에여 ㅋㅋㅋ
40이요
전걍 그래프만으로 풀었는데
f(x)그리고 y=x, y=-x 그리면 y=x가 y축이되고 y=-x가 x축이되서
(-4,6)이 y=-x에서 위쪽으로 4길이, 그담에 y=x방향으로 6길이만큼 이동한거니까
수직그어서 보시면 (루트2,5루트2)가 원래점으로 구할수 있어서
이점에서 f(x)접선이랑 y=x, y=-x교점 찾아서 그 두점에서 원점까지거리가
1,4/5 나오니까 2/5 나오네요 ㅋ
먼가 복잡한게푼거같긴한데 전 그림으로푸는걸 좋아해서 ㅋ
오오!! 래선님이 말씀하신 풀이법이 역행렬을 이용한 풀이법이 생기게 된 배경이 되는 개념일 것 같은데
보통은 공식화 된 표현에 익숙해져서 저 문제를 보면 역행렬을 먼저 떠올리죠 그리고 이미 알고 있는 공식에 대입하는데,
근데 님은 정형화되지 않고 좀 더 근본적인(?) 방법으로 풀어주신 거 같아요 ㅎㅎ 저도 이런식의 사고법 참 좋아해요 ㅎㅎ
풀이 감사합니다 ^ ^
정석 실전편 정확히 13-27에 있습니다 ㅋㅋㅋ 이거 함수의 정의 를 몰라서 빡쳣던 그문제네요ㅋㅋㅋ 저도 ㅋㅋ y=.x,-x 그려서 거리 4에서 만나는점 에서의 접방 구해서 구햇음 ㅋㅋ
근데 이게 기출이엇군요 ㅋㅋ
탄젠트 정리도 음 ㅋ 거의 비슷한거 같음
어머 이거 유사한 문제가 정석 실력편에 있다규요??
홍성대님과 통했다 ... ♥ 공부 올바르게 하고 있는 느낌 드네여 ㅋㅋ 좋은 정보 감사합니다
전그냥 회전변환을 이용해서 풀었는데;;; 위에분들은 뭐 다들 y=x 어쩌구 저쩌구 하는데 무슨말인지 잘 모르곘음,, ㅠㅠ
그렇게 푸셔도 되구요 ^ ^ 근데 그러면 계산실수 생기기가 쉽잖아요
y=x 이게 무슨 말이냐면요,
f(x) 함수를 45도 회전시키는 게 아니라, x축과 y축을 -45도 회전시킨다고 생각하는 거에요 그러면 x축은 x=-y 직선의 위치로 이동하게 되고, y축은 x=y 직선으로 이동하게 되는 거죠
음 .. 바닥에 놓여있는 바위의 뒷면을 보기 위해서 바위 자체를 돌리느냐, 아니면 내가 바위 뒤로 가서 보느냐 .. 의 차이라고 할 수 있겠네요 ^ ^ 님이 푸신 방법은 바위 자체를 돌리는 거고
윗분들이 푸신 방법은 내가 바위 뒤로 가서 보는 거고 .. 음 비유가 적절한지 모르겠네여 @.@
저도 역행렬로 원래함수와 y=x, y=-x 로 옮겨서 생각
그나저나.. 뭔가 참신해 보이는 문제보면 흥분하는걸 보니 제가 미쳐가는 걸까요 ㅋㅋㅋㅋㅋ
원래 이런사람 아니었는데.. 사람이 변하면 어떻게 된다던데 ㅠ ㅋㅋ
02년 수능에 역함수문제가 문득 떠오르네요..
이야 .. 전 이래서 오르비님들이 너무 좋아여 ㅋㅋㅋ 수학을 사랑하는 마음, 역사를 돌아보는 현명함 !!!