아래에 기벡 문제!!! 타원으로 푸는 방법 올려드려용(그림)
게시글 주소: https://orbi.kr/0003136229

저질 그림판 해설이라 이해 되실지 모르겠네요 ㅠㅠ
식은 syzy 님께서 댓글로 (감사하게도) 달아주셨는데요,
그 식이 고등학교 교과과정에서 배우는 유형의 식은 아니구요 ^^
처음 문제 출제 의도도, 처음부터 쭉 수식으로 푸는게 아니고 그림으로 생각해서 점, 평면, 직선의 관계를 따지면 풀리도록 만든 거라서요,
교과과정 내에서 사고하는 방법으로 이해하는 방법을
그림을 올려드립니다^^ 같이 보시면 좋을 거 같아요
문제 보시면,
처음 조건으로 점 B가 벡터 OA를 법선벡터로 하고 점 A를 지나는 평면 위에 존재한다는 것을 알 수 있죠
이 평면을 a라고 할게요
두번째 조건으로 ㅣOBㅣ +ㅣABㅣ=10 이라는 조건이 있는데요,
이걸 가지고 피타고라스로 푸셔도 상관 없는 문제가 되어 버렸는데, 원래 의도는 타원이라고 말씀드렸었죠 ^^
타원으로 푸는 방법은
우선 타원의 정의가 두 점으로부터의 거리가 일정한 점의 자취죠??
보시면 O 와 A는 정점이고, B가 동점이에요
그러므로 두번째 조건으로 타원이 생기는 걸 아실 수 있을 텐데요,
이게 평면이 아니라 공간이기 때문에 직선 OA를 포함하는 임의의 평면에 점 B의 자취인 타원을 그리시고
그걸 직선 OA를 축으로 회전시키면
위와같은 그림이 되겠죠??
그런데 처음 조건에서 B는 평면 a위에 있었죠?
그리고 평면 a는 벡ㅌ OA를 법선으로 가지죠, 즉 선분 OA와 AB는 수직하죠??
그럼 이제 다 푸신겁니다 ^^
타원은 장축의 길이가 10, 두 초점 사이의 거리가 6인 타원으로 식을 세우신 다음에
x 값에 3을 넣어주시면 나오는 y값이 바로 선분 AB의 길이가 되겠죠??
그런데 보시다시피 점 B는 점 A를 중심으로 하는 원이기 때문에, 선분 AB의 길이가 반지름이 되는 것이고,
이로서 점 B의 자취의 길이 완성 !!
제가 지금 설명을 잘 하고 있는 건지 모르겠네요ㅠㅠ
미천한 제 문제 풀어주셔서 감사합니다 ^ ^ 수능대박나세용
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇ
-
법선벡터 외적안하고 찾기 and 평면 연장하기
-
내가 해주는거 말고 받고 싶어
-
그 카리나 말고 나 나 나라고
-
이건 의무야
-
이건 28렙이 맞음
-
이번달 돈을 너무 많이 써서 참는중 뭐 먹지
-
좋은 향 널렸다 0
오늘의 향은 아쿠아 디 파르마 아란치아 디 카프리 곧 오시는 봄과 어울리는 향
-
ㅇㅇ
-
저도 ㄱㄱ 3
-
비갤 말고 나
-
welcome 을종배당이자소득세 영혼의 동료 항상 감사합니다 Goat
-
하연도 사랑해주자 10
-
인스타에서 아무사진 긁어오면 절대모를듯
-
에휴
-
나 귀여워해주ㅜ라
-
의문사도 사랑해주자 11
-
처음 해보는데 제가 과외 지원서 학생분들께 계속 넣어야지 잡히죠? 학생들이 먼저...
-
지난주에 일 너무 많이해서 3키로 빠짐..
-
취르비 4
우웅
-
공잘 왕잘 0
응응 입니다 에요
-
웅
-
올해는 반드시 0
SKY중 하나는 합격해야지 할거야 할 수 있다
-
용돈 제외 알바 과외로
-
기억도안나네ㅜ
-
아이디어랑 뉴런 다 샀습니다. 아이디어는 2월중으로 끝나는데 3월부터 뉴런하는거에...
-
영어유기를절대하지말것
-
분명 내가 수학 과탐 가르쳐 주던 앤데...어째서일까
-
다른 라이더가 내 치킨 딴데 배달해서 첨부터 다시 한다네.. 배고파ㅏㅏㅏㅏ
-
언매 확통 영어 한국사 정법사문
-
아무도 하찮게 안 봐 최상위권인 이재용 딸이 있음 님들은 일반 사람이고 나같은...
-
한심한버러지취침 2
안깨는꿈을꾸고싶어요
-
동생이랑 노는거 좋아하는 편인데 요즘 느끼는게 내가 수준을 낮춰줄 필요가...
-
고민을 너무 많이했으
-
드디어 집이다 4
오늘 너무 많은 일들이 있었어
-
오르비 안녕히주무세요 19
피곤하고 일찍? 일어나야해서 자러 가볼게요 해뜨고 봐요!
-
캐슬진짜재밌네 0
이거 주변에 보는 애들 호들갑 개심해서 안 보고 있었는데 이젠 내가 엇박찌르기 ㅇㅈㄹ 하고 다님
-
그거 최종본 언제 나와요...? 진짜 제가 문 닫은 건지 궁금한디
-
내가대학도못간저능한놈이라그러는거다아는데 이렇기ㅣ말하면피해망상이야
-
네 2
네감사합니다 아니요 괜찮아요ㅎㅎ
-
칼럼에도전하는중 7
근데 이것도 쓰다가 확신안들면 엎을듯
-
댄 잇츠 업 댄 잇츠 업 댄 잇츠 스턱
-
언제부터 꼬였지
-
수능은중독이맞다 4
존나 아슬아슬하게 합격해서 다신 쳐다도 보지 말아야지 햇는데 오르비 며칠 눈팅하니까...
-
걍내가공부못하고멍청한놈이니그러는거야?
-
노략의 방향을 정하면서 이때까지의 옳지못한 방향을 보며 현타오는데 그냥 존@나...
-
쉽지않군…
-
아 물림 ㅋㅋㅋ
-
재수생 질문 3
더프 싹 안봐도 되나요?
-
집에서 1. 같이 엄마몰래 사이키쿠스오 관련대사 슬쩍 치면서 놀음 (밥먹다가 갑분...
공간상에 타원을 생각하는건 좀 고교과정 오바된것같기도함 @_@
으음 .... 그런가요? @.@
교과과정 안에 공간상 타원체의 방정식 같은 건 배운 적이 없지만 ..
요건 그런 방정식이 아니라
평면, 직선, 점 사이의 관계만 가지고도 풀 수 있어서 조금만 유연하게 생각을 하시면 .... 안되려나 .. ㅎㅎ
저도 수학의 정석.기출 말고는 개념 공부를 따로 더 한적은 없는 상태에서 만든 문제니까 ..
이정도는 응용 가능하지 않을까..나요ㅎㅎ
어쨌든 교과과정 내 정식으로 단원이 편성되어있진 않은 건 인정 ! 인정! ㅎㅎㅎㅎ
충분히 가능하지 않나요?
2010 수능에서는 평면과 구가 만나서 생기는 원을 정사영시키면 타원이된다 < 라는 내용을 만들었는데, 이거에 비하면 양민인거같은데..
저도 이 문제 풀면서 머리로 타원그리고, B의 자취는 원이 되겠구나 생각하고 난 다음에 풀었어요.
사실 공간도형,공간좌표라는게 평면도형에서 생각하던 걸 공간관점에서 생각하는거잖아요. 원의 방정식 확장형인 구의 방정식을 배운 이상
이정도 추론은 충분히 가능하지 않을까싶어요
사고과정은
두 점에서 거리의 합이 10이다 => 타원과 관련이 있나 => 우리가 배우던건 평면위에서 그려져있는 타원인데
=> 그러면 공간상에서는 이 타원을 회전시킨 게 되겠구나.
정아니면 그냥 피타고라스써서 풀어도 되지용ㅋ
다시 고민해봤는데, 이정도면 상관없을 것 같아요.
만약에 문제에서 전제조건 식으로 알아야된다는 듯이 공간상의 타원을 언급했다면 문제가 됬겠지만,
그게 아니라 공간상의 타원을 "추론"하는 관점이면 상관없는 것 같아요.
저는 그 타원을 회전시킨게 되겠구나 하는 과정이 추론이 안됩니당 ㅜ.ㅠ