수리 굇수님들 헬프ㅠ
게시글 주소: https://orbi.kr/0003117758
아 독재라서 질문받아줄 사람이 없네요 ㅠ ㅜ
바로 질문할게요
미분문제에서 미분가능성 따질때요.
도함수로 원함수예측하잖아요?? 근데 원함수의 x=a에서 미분가능성은 도함수 x=a에서 좌우극한을 따지는데요
문제는 옛날에? 신승범쌤이 수업할때 가르쳐준것중 이해가 안가는게 잇엇는데 오늘자이기출풀다가ㄴ나와서요
도함수의 x=a에서도함수의 함수값이 없을때 왜 원함수 x는 a에서 미분불가능 인가요?? 미분불가능은 좌우 극한으로만 알수잇지 않나요?? 자세히 설명좀요ㅠㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나무 잘탐 졸라 잘탐 진짜로
-
현실에서 서바이벌게임 하는 느낌이야
-
걍 불행 행복 이런거랑 무관하게 새로운 인물들이 내 인생에 나타나서 도장깨기 중임 재밋어
-
시험 얼마안남아서 마지막으로 화학1 수특풀려고하는데 2점은 풀만하고 3점은 몇개뺘고...
-
집에 12시쯤인가 가고있는데 아파트주택가에서 누가 계속 울부짖는 소리가 들리는거임...
-
그래서 꼬리 두개임
-
제발 나이거너무먹고싶어제발
-
"마르크스 경제학 강의 복원하라" 연서명 나선 서울대생들 0
작년 가을부터 수요부족 이유로 미개설…"대학 근본적 목적 외면" (서울=연합뉴스)...
-
[칼럼] 2028 예시문항을 통해 본 2022 개정 교육과정 기반 국어 출제의 방향성 1
2028학년도 대학수학능력시험 예시문항 세트의 구성을 통해 파악할 수 있는 점들을...
-
하루에 실모 3개를 꾸준히 풀면 100점 나온다고 듣긴함
-
하지만 난 착하니깐
-
영어 0
이 해석본 저만 이해 잘 안되는거 아니죠?? 영어 번역은 잘 됐는데 내용이 계속...
-
이걸놓치다니..
-
이거 맞냐
-
~~~~
-
그보다 목소리가 좀 신기하네요 노래 좋다~
-
벌써 곧 4시네요 16
어쩐지 피곤했는데 벌써..
-
수학 고민? 4
qed같은 초고난도 n제 풀면서 약간의 고민이 생긴게 문제 해석이 잘 안 되니까 아...
-
파데만 끝내고 오늘 아이디어 들어봤는데 뭔소린지 모르겠으면 킥오프랑 기생집 2.3점...
-
심연도 날 들여다 본 것 같은..그런 기분이 들어....
-
근 1년 중 제일 늦게까지 깨어잇는 듯
-
여기 츠케멘이 참 맛있어요
-
空の青さを知る
-
야와조기에서 0
야와만 지키는중
-
내 눈!!! 7
야갤 보다가 ㅎㅋㅅ 봤어....
-
오전에 운동 갈 수 있을까...
-
재종 편입 2
시대 재종이랑 s2 , 강대 본관 인문반 대기 넣어서 합격했는데 지금 가도 따라갈수...
-
일기 끗 5
님들 뒷담 잇다고 한 거 구라임 이제 진짜 자야대는데 커찮군
-
관심 있는 분들은 도전 ㄱㄱ
-
코노세카이와 단스호루~
-
하 습해
-
24수능 (찍맞X) 25수능 (78, 28찍맞) 5, 21, 22, 27, 29, 30 ㅁㅌㅊ
-
후배들한테 자꾸 연락와서 몬하겟음.. 자꾸 질문하는데 나도 잘 모르겠어서 억지 대답...
-
아오생화학시치 1
서술형다버리고 족보객관식만외워야지
-
예전같지않아
-
자야겠다
-
밤샘시작!!!!! 20
으아아ㅏ느느느아아아랑ㅇ아나아나나나아ㅏ아아아아아아!!!!!!!!!!!!!!!!!!!!!...
-
으으으 5
-
제발화요일에도와주세요제발
-
현역 수능 미적분으로 21252맞고 수학을 잘해서 5가 있어도 그 덕에 건동홍 경영...
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 다들 한 번씩만 봐보세요
-
왤케 습하지.. 0
제습기 킬까..
-
제주도 살고싶다 0
여기 너무 좋아요
-
심심띠예 0
ㅜㅜ
-
ㅈㄱㄴ
-
김동욱 정석민 0
김동욱 일클 거의 완강했는데 처음에는 뭔가 알 것 같더니 아직까지 겉으로만...
-
난 아주 높게 평가함 파합~♡
-
남의주관을따르지않는사람 머싰음 쉬운게 아닌디
-
족보없는데 나랑비슷한성적인게 ㄹㅇ십재능충임
미분의전제가연속이라그런건가..
아 그런것도 같아요 .근데 문제는 x=a를 기점으로 서로 다른 함수가 주어지면 어떵게 되는지 잘 모르겟네요
x=a에서 미분가능하려면 도함수가 a에서 연속해야되는데 거기에서 함숫값이 없으면 연속이 안되니까 미분불가능한거죠
근데 미분가능의 조건이 도함수의 연속성 즉 좌 우 극한값이 모두다 같다는것인가요?? 저는 좌우 까지만 같아도 된다고 배워서요ㅠ 아 개념이 헤깔리네요ㅠ
미분이 가능하려면 연속해야 하는데, 연속하려면 좌우 극한과 극한값 3개 모두가 같아야 되죠.
그니까 결국은 미분이 가능할면 좌극한,우극한,극한값 3개가 모두 같아야 가능하다는거죠
미분의 정의자체가 연속이라는 개념을 바탕으로 하고 있어서 그렇습니다. 연속이라고해서 무조건 미분가능은 아니지만 미분이가능하면 연속이어야해요.
미분이 수식으로
lim h->0 일때 f(x+h)-f(x)/h 인데 극한값이 존재하더라도 함수값 f(x)가 존재하지 않으면 식에서 값을 구할수가 없게됩니다.
"lim h->0 일때 f(a+h)-f(a)/h 이 존재할 때"
=
"lim h->+0 일때 f(a+h)-f(a)/h 과 lim h->-0 일때 f(a+h)-f(a)/h이 같을 때"
=
"즉 평균변화유링 극한값이 존재할 때"
그 값을 f'(a)라고 약속하느 ㄴ겁니다/.
따라서 f'(a)가 없으면 미분불가능한거죠.
참고로 도함수의 연속성과 미분가능성을 연계짓고계시는데 둘은 별 상관없습니다.
"도함수의 함숫값"만이 상관있죠
그렇다면 도함수가 x=a에서의 극한값이 존재하지만 이와 함숫값 f ' (a)가 달라 불연속인 경우에도 원함수는 x=a에서 미분가능하다는 말씀이신가요?
그런 경우가 있다면 x=a에서 미분가능하다고 봐야겠지만 그런 경우는 없습니다. 즉, 도함수f ' (a)가 존재하고, f ' (x)의 극한값(x->a일때)이 존재하면, 그 두 값은 반드시 같아야 합니다. 이런 의미에서, 해원님이 도함수의 연속성과 미분가능성이 별 상관이 없다고 하였지만, 또 상당히 관련이 있기도 합니다. 어쨋거나 일반적으로 미분가능하다 해서 도함수가 연속은 아니고, 질문자님의 질문에서처럼 아예 f ' (a)가 존재하지 않는다면 그냥 그 자체로 미분불가능하다는 뜻이고, x->a일때 f ' (x)의 극한값과도 물론 아무 상관 없습니다. (아예 존재하지 않으므로)
"그런 경우가 있다면 x=a에서 미분가능하다고 봐야겠지만 그런 경우는 없습니다."
이부분은 정정이 필요할듯 합니다.
함수
f(x)=
x^2 sin(1/x^2 ) (x=0 이 아닐때) ,
0 (x=0 일때 )
이렇게 두조건 으로 정의된 함수는 x=0 에서 연속입니다. x=0 에서 미분도 가능하구요 하지만 도함수가 x=0 에서 연속은 아닙니다.
x=0 근처에서 미췬듯이 진동해나가는 그런 함수이죠.
그래서 사실 함수의 미분가능 문제를 100% 정석으로 풀려면
미분계수의정의를 이용하여 미분계수값(미분계수의 좌극한과 우극한이 같다)
로 푸는 것이 정석입니다. 그런데
대부분의 출제되는 문제들의 함수들이 도함수가 연속인 함수들이 출제가 되기 때문에
미분먼저하고 연속이다 로 푸는데 ㅅ실 그풀이는
엄밀히 말해서 제대로된 풀이는 아닙니다.
그게 아니죠.. 말씀하신 예는 유명한 것인데요, 그 경우 도함수f ' 이 x=0에서 극한값 존재하나요? 제가 말씀드린 것은, 도함수 f ' (a)가 존재할 뿐 아니라, x->a일때 f ' (x)의 극한값도 '존재'한다면 lim_{x->a} f ' (x) = f ' (a) 여야 한다는 것입니다. '도전인'님 질문을 정확히 읽어보세요. 제가 말씀 드린 것은 정리로 알려진 것이고 증명은 생각보다 쉽지 않습니다.
감사해요 ㅎㅎ 고3때도 이해가 안갓는데 개념책피고 생각해보니깐 알겟네요 ㅠㅠ제가 평균변화율을 자꾸 도함수의 기울기랑 연관지엇네요 암기교육의폐혠가?? ㅋㅋ암튼 감사해욥 수리 굇수님ㅋㅋㅋ
직관적으로 생각해보면 도함수의 함수값은 그 점 에서의 원함수의 평균변화율의 극한값인 겁니다. 그 점에서 도함수가 함수값을 가진다면 그점에서 원함수의 평균변화율의 극한값이 존재한다는 말이므로 당연히 미분가능하게 되는거죠.
x=a에서 도함수의 함숫값이 없다는게
x=a에서 원함수가 미분계수가 없다는 뜻이죠
그러니까 미분불가능한거임
너무 어렵게 생각하시는 듯
그러니까 x=a에서의 도함수의 함숫값은 그냥 원함수의 x=a에서의 미분계수를 나타낼 뿐입니다
당연히 도함수의 함숫값이 없으면 미분계수자체가 없다는소리니까 미분이 불가능하죠