(수정재업) 밀도형 자료의 내분과 평균변화율
게시글 주소: https://orbi.kr/00031140330
이전 내용이 좀 부족해서 설명추가해서 재업합니다.ㅋㅋ 박제하려고요..
안녕하세요, 논리화학입니다. 원래 계획대로면 8월 초에 2가산 보충 하기 전까지 딱히 글을 쓸 일이 없었는데 오늘 아침에 밥을 먹다가 밀도 내분 관련해서 설명 아이디어가 떠올라서 짧게 글을 써 봅니다. 나중에 설명을 이거로 바꾸려고요. 이미 직관적으로 알고 계셨을 분들도 있을거고, 당연한 내용입니다.
Chemistry Logistics 110p를 보면 이런 내용이 있습니다.
사실 여기를 쓰면서 좀 고민을 많이 했는데, 저게 되는게 너무 당연한데 이를 설명 할 방법이 그냥 '식 모양이 그렇다'라고 하는거 말고 딱히 없더라고요. 직관적으로 너무 당연하지만 뭔가 전달이 잘 안되는 느낌이었습니다.
단위X당 Y의 자료의 경우, X에 대해 Y의 양이 비례하는 상황입니다. 예를 들어 단위 질량당 원자수가 4라면 3g있으면 대충 원자가 12개있다고 할 수 있는것처럼요.
즉 어떤 물질 A에 대해 단위 X당 Y가 a라면, Y=aX꼴로 나타낼 수 있습니다.
또 어떤 물질 B에 대해서도 단위 X당 Y가 b라면 Y=bX꼴로 나타낼 수 있겠죠. 이걸 기하적으로 나타내면 다음과 같습니다.
이 상황의 경우 단위 X당 Y가 각각 1, 3이라고 할 수 있겠네요. (기울기) 이제부터 설명 편의상 가로축을 부피, 세로축을 질량이라고 해 봅시다. 또 파란선을 A, 초록선을 B라고 합시다.
이제 예를 들어, A가 1, B가 1만큼 있다면 평균변화율(즉, 평균밀도)은 당연히 2입니다.
한편, A가 3, B가 1만큼 있다면 평균변화율은 1.5(=(3+3)/4)인데요, 이건 A와 B를 1:3으로 내분한 것과 같습니다. 이제 이 이유를 설명 해 봅시다.
상황은 그대로 A(기울기 1)을 3개, B(기울기 3)을 1개 넣은 상황입니다.
이제 주황선은 평균변화율인 1.5를 반영하여 y=1.5x를 나타낸 상황입니다.
x축의 값이 4일때를 보면, A는 4, 평균은 6, B는 12입니다. 평균으로부터의 거리비가 1:3이네요. 즉 1:3내분점입니다.
이제 주황색인 y=1.5x를 파랑색이랑 초록색에 각각 빼서 그래프로 나타내 봅시다.
각각 y=x와 y=3x에서 y=1.5x를 뺐으니, y=-0.5x와 y=1.5x가 됩니다. 그러면 x축으로부터의 거리비가 1:3이 됩니다.
이제 파란선을 따라 오른쪽(x축)으로 3만큼 움직이고 초록선을 따라 오른쪽으로 1칸 움직이면 당연히 x축이랑 닿아야 하는게 눈이 보입니다. 지금 상황은 평균변화율인 1.5x를 뺀 상황이니, x축과 닿는다는건 평균변화율과 일치한다는 말 입니다.
위에 써 놓은 '오른쪽으로 3만큼 움직인다'를 물질의 관점에서 보면 '물질 A를 3만큼 넣었다'라고 할 수 있겠죠. 즉 물질 A를 3만큼 넣고 물질 B를 1만큼 넣었더니 평균변화율이랑 일치했다는 뜻 입니다.
이제 이 상황을 일반화해서 생각하면 밀도형 자료가 내분되는게 더 직관적으로 와닿습니다.
어떤 느낌으로 하시면 되는지 수학적으로 설명 해 보겠습니다.
내분하고 싶은 두 일차함수를 ax와 bx라고 생각합시다.
이제 우리가 ax와 bx에서 적당한 일차함수를 그냥 뺍니다(당연히, 기울기는 a와 b 사이입니다)
그러면 위 그림처럼 x축과의 거리비를 가지는 일차함수가 될겁니다.
그러면 그 거리비가 존재비율의 반대가 됩니다. 이유는 아까처럼, 오른쪽으로 적당히 움직여 보면 바로 알 수 있습니다.
사실 이 설명은 원래 pdf(119p)에 보너스로 있던 일차함수 내분을 거꾸로 읽은 느낌이죠. 이전엔 밀도가 내분되니깐 일차함수도 내분된다는 식의 증명이었습니다. 이번엔 일차함수가 내분되니깐 밀도도 내분된다라는 느낌으로 설명하는 느낌입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나도 1
초 고교급 미소녀 천재 여고생이고 시픔
-
인싸들 왜 여깃음
-
학력증빙서류가 뭘 뜻하는거임? 정부 24 갔더니 성적 증명서? 그런거밖에 안뜨는데 그거 떼가면 됨?
-
인간실격 보고 4
어케 인간이 이런 글을 썻지..? 싶엇음 도저히 인간의 상상력으로 나올 인생이...
-
구왁
-
ㅇㅈ 19
사진도 없는데 왜 클릭했어요...?
-
인간인지 의심당함
-
나도 잼미인데 9
17살인데
-
정실은 4
순애다
-
유혹받았는데 내가 거절했어 한순간에 남같이 돌변하더라 너무 힘들어 지금도 울고 있어...
-
Tim 듣고잇는데 모고치면 맨날 6떠요 이번 3모는 2등급떴는데 Tim 계속 하는게...
-
못해주겟대..
-
미적 수1 수2 수분감 step 0,1 풀었고 뉴런도 거의 다 끝났고 step 2랑...
-
1. 강의 업로드 밀리지 않기 2. 수능에 필요한 고1수학이나 도형들 특강 느낌으로...
-
맛없음
-
감정이입됨 슬픔
-
나도 해볼래요
-
근데 웹툰에다가 순애 어필 엄청하다가 마지막에 ntr하면 캬... 7
독자도 ntr하는 ntr장인 작가 그는 도대체.. 딱 그냥 태그에 #그녀석...
-
저긴 진짜 정병집합소네 합리적 대화 자체가 불가능함..
-
순애를 왜 봄 5
창작물로써의 가치가 없다
-
어디가 더 낫나요
-
셤장에서 4점짜리 문제 딱 3개만 풀고 싶네
-
애초에 자는 시간이 아님
-
금욜이 바쁘네 0
이번주는 고향 친구들 올라온다하고..
-
지리는 풀이들 보는 중대체 어케 한겨
-
이거 요샌 27번으로 나오잖아
-
맨정신인 김에 이미지 빡세게는 못하고 짧게 해드림뇨 34
기기혓고고씽
-
국어 4점 어케 품
-
물1 vs 생1 2
생1 내신때 기억 약간 있고 옛날에 물1생2 해서 24 떴는데 생2 버리고 지1으로...
-
엑셀 브릿지 하루에 50문항씩은 밀어야 한다던데 엑셀 브릿지 정도면 잴 어려운게 14번급인가
-
그 말을 기다려주는게 참 어렵구나
-
연날리다가 끈이 찢어진 경험이 있나요 저도 없어요 애가 나올 것 같은 느낌 애가...
-
나 잠 좀 자자
-
삼수생제발제발조언좀해주 13
오늘 시대인재 첫 등원이었는데 교재비며 뭐며 다 합치면 300은 되는데 진짜 이 돈...
-
1식을 미분하면 정답이 나오는데 2식을 미분하면 정답이 안 나옵니다 왜 2식을...
-
고2 정파라 수업시간에 자습허락해주시는분은 없다ㅠㅠ 한 분 물어봤는데 혼남ㅠㅠ...
-
수시 연고대 문과 vs 정시 중경시 공대
-
차가운 오르비 4
요즘은 ㅇㅈ도 잘 안함
-
369수능 몰아서 해도 되나요 아님 시험 끝나고 기간제한이 있나여
-
사탐 기출문제 0
6평 전까지 투사탐 기출 2회독 할려하는데 사탐은 펑가원 기출만 봐도 충분하겠지??...
-
수학 14 21 22 29 30 틀 14번은 공통접선인거 알았는데 f'(1)=1인거...
-
지금 180임
-
ㅈㄱㄴ
-
어떻게 함??
-
힌트를 드리자면 공간을 그 자체로서 다루는 능력 이게 중요합니다 공벡아니고 공도
-
공부 못하던 시절에 스카이 이상 다니는 사람은 진짜 다른세상 사람인 줄 알았는대...
-
재수생익고요 지구 세지하다가 지구 버리고 사탐런 하려는데,국어를 좀 치는 편이긴한데...
-
이제 수1 기출좀 돌리려고 하는데 너기출이 먼저인가요 어삼쉬사가 먼저인가요
-
힌트:치킨
와......

올라가십쇼
올라
가
라

올려드리자무엇하시는분인가요 이분?ㄷㄷ
논리화학형 수고하셧어요
윤갤에서 많이 뵙던 분이네요
형때매 ㅎ르비계정팠다 ㅅㅂ
논화형 화학 인현강 차이커? 고2인데 지금 훈구개념시작하고 기출, 고석용 킬특하고 내년 시대 현강 갈까?
내년 시대 현강 가서 서바까지 ㄱ. 차이 생각보다 좀 있음. 풀이보다도 실모차이?
아 고마워 형, 올해는 걍 정훈구 풀커리만타고 충분할까? 이제 막 시작해서..
그리고 이윤희 강준호 두쌤이있는데 나은 분 ㅊㅊ 해줘 고마워 형
나도 형나가고 윤갤접엇어
두분다 좋을거고 나는 이윤희쌤밖에 잘 몰라. 정훈구 풀커리...느낌보단 그냥 그때그때 해야할거를 잘 해봐. 실모는 아직 풀 필요 없을거야.
ㅇㅋㅇㅋ 땡스 무작정 풀커리타려하지말고 개념- 기출 그냥 그때그때 해야할것잘해놓으라는뜻??
ㅇㅇ 고2때 풀커리는 독이야그리구
고마워형 항상 행복하셈
여기서 말하는 평균변화율은 어떻게 구하는건가요?